R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

3. We now review k-fold cross-validation. (a) Explain how k-fold cross-validation is implemented. (b) What are the advantages and disadvantages of k-fold crossvalidation relative to: i. The validation set approach? ii. LOOCV? Answer: It involves randomly dividing the set of observations into equal size groups. The first group is treated as a validation set. The procedure or cross validation is implemented by observing each of the groups which would produce results in k estimates of the test error. The advantage of this approach is that it is simple to implement and easy to understand. However, the validation can produce a high number of variables. The validation approach produces different results when applied repeatedly due to the splitting process while the LOOCV will produce the same results regardless of the number of times performed. The downside of LOOCV is that it is extremely complex and not easy to implement.

5. In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis. (a) Fit a logistic regression model that uses income and balance to predict default.

library(ISLR2)
set.seed(1)
fit.glm = glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4725  -0.1444  -0.0574  -0.0211   3.7245  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
## income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
## balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1579.0  on 9997  degrees of freedom
## AIC: 1585
## 
## Number of Fisher Scoring iterations: 8
  1. Using the validation set approach, estimate the test error of this model. In order to do this, you must perform the following steps: i. Split the sample set into a training set and a validation set. ii. Fit a multiple logistic regression model using only the training observations. iii. Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the default category if the posterior probability is greater than 0.5. iv. Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.
train = sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm = glm(default ~ income + balance, data = Default[train,], family = "binomial")
fit.glm = glm(default ~ income + balance, data = Default, family = "binomial", subset = train)

summary(fit.glm)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default, subset = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5830  -0.1428  -0.0573  -0.0213   3.3395  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.194e+01  6.178e-01 -19.333  < 2e-16 ***
## income       3.262e-05  7.024e-06   4.644 3.41e-06 ***
## balance      5.689e-03  3.158e-04  18.014  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1523.8  on 4999  degrees of freedom
## Residual deviance:  803.3  on 4997  degrees of freedom
## AIC: 809.3
## 
## Number of Fisher Scoring iterations: 8
glm.probs = predict(fit.glm, newdata = Default[-train, ], type="response")
glm.pred=rep("No",5000)
glm.pred[glm.probs>0.5] = "Yes"

mean(glm.pred != Default[-train, ]$default)
## [1] 0.0254
  1. Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained. Answer:We can see that depending on which observations are included in the training set and what observations are included we can see that the test error can be a variable from the variable estimate.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0274
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
  1. Now consider a logistic regression model that predicts the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate. Answer: We can conclude that adding the student dummy variable does not lead to a reduction in the test error rate.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance + student, data = Default, family = "binomial", subset = train)
pred.glm <- rep("No", length(probs))
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0278

6. We continue to consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. In particular, we will now compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Do not forget to set a random seed before beginning your analysis.

  1. Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model that uses both predictors. Answer:The coefficients B0, B1, B2’S glm estimates of the standard errors are .434, 4.985x10^-6, & 2.273x10^-4 respectively.
set.seed(1)
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
summary(fit.glm)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default, subset = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5830  -0.1428  -0.0573  -0.0213   3.3395  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.194e+01  6.178e-01 -19.333  < 2e-16 ***
## income       3.262e-05  7.024e-06   4.644 3.41e-06 ***
## balance      5.689e-03  3.158e-04  18.014  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1523.8  on 4999  degrees of freedom
## Residual deviance:  803.3  on 4997  degrees of freedom
## AIC: 809.3
## 
## Number of Fisher Scoring iterations: 8
  1. Write a function, boot.fn(), that takes as input the Default data set as well as an index of the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.
boot.fn <- function(data, index) {
    fit <- glm(default ~ income + balance, data = data, family = "binomial", subset = index)
    return (coef(fit))
}
  1. Use the boot() function together with your boot.fn() function to estimate the standard errors of the logistic regression coefficients for income and balance. Answer: The coefficients B0, B1, B2’S bootstrap estimates of the standard errors are .4239, 4.583x10^-6, & 2.268x10^-4 respectively.
library(boot)
boot(Default, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##          original        bias     std. error
## t1* -1.154047e+01 -3.912114e-02 4.347403e-01
## t2*  2.080898e-05  1.585717e-07 4.858722e-06
## t3*  5.647103e-03  1.856917e-05 2.300758e-04
  1. Comment on the estimated standard errors obtained using the glm() function and using your bootstrap function. Answer: Based on the two methods the estimated errors obtained were similarly close to each other.

9. We will now consider the Boston housing data set, from the ISLR2 library.

  1. Based on this data set, provide an estimate for the population mean of medv. Call this estimate ˆµ.
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
## 
##     Boston
mu.hat = mean(Boston$medv)
mu.hat
## [1] 22.53281
  1. Provide an estimate of the standard error of ˆµ. Interpret this result. Hint: We can compute the standard error of the sample mean by dividing the sample standard deviation by the square root of the number of observations.
se.hat = sd(Boston$medv) /sqrt(dim(Boston)[1])
se.hat
## [1] 0.4088611
  1. Now estimate the standard error of ˆµ using the bootstrap. How does this compare to your answer from (b)? Answer: In (b) we get a .4088611 standard deviation and here we get .4106622.
set.seed(1)
boot.fn <- function(data, index) {
    mu <- mean(data[index])
    return (mu)
}
boot(Boston$medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 22.53281 0.007650791   0.4106622
  1. Based on your bootstrap estimate from (c), provide a 95 % confidence interval for the mean of medv. Compare it to the results obtained using t.test(Boston$medv). Hint: You can approximate a 95 % confidence interval using the formula [ˆµ − 2SE(ˆµ), µˆ + 2SE(ˆµ)]. Answer: the t.test()function is very similar to the bootstrap confidence interval.
t.test(Boston$medv)
## 
##  One Sample t-test
## 
## data:  Boston$medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  21.72953 23.33608
## sample estimates:
## mean of x 
##  22.53281
  1. Based on this data set, provide an estimate, ˆµmed, for the median value of medv in the population. Answer: 21.2
med.hat <- median(Boston$medv)
med.hat
## [1] 21.2
  1. We now would like to estimate the standard error of ˆµmed. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings. Answer: The estimated median value we get is 21.2 which is is the same result as (e), with a low median value of st.dev. of .3770241.
boot.fn <- function(data, index) {
    mu <- median(data[index])
    return (mu)
}
boot(Boston$medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original  bias    std. error
## t1*     21.2 -0.0386   0.3770241
  1. Based on this data set, provide an estimate for the tenth percentile of medv in Boston census tracts. Call this quantity ˆµ0.1. (You can use the quantile() function.)
percent.hat <- quantile(Boston$medv, c(0.1))
percent.hat
##   10% 
## 12.75
  1. Use the bootstrap to estimate the standard error of ˆµ0.1. Comment on your findings. Answer:The estimated value we get is 12.75 which is the same to the value obtained in (g) in the tenth percentile with a standard deviation of .4925766 is relatively small in comparison to the percentile value.
boot.fn <- function(data, index) {
    mu <- quantile(data[index], c(0.1))
    return (mu)
}
boot(Boston$medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original  bias    std. error
## t1*    12.75  0.0186   0.4925766