Question 3. Reviewing k-fold cross-validation

a) Explaining how k-fold cross-validation is implemented.

The data is split into k groups. Within each group, the data is further split into training data and validation date. A model is fit to the training data set and evaluated against the validation data. Retain the MSE and repeat the process k more times, taking out a different part of the data each time. You then average the K number of MSEs to obtain estimated test error rate.

b) What are the advantages and disadvantages of k-fold cross validation in relation to:

i) the validation set approach?

Validation set is easy to use but validation MSE is highly variable. Methods do not perform well when trained on a smaller set of observations.

ii) LOOCV?

LOOCV has lower bias but higher variability. LOOCV is computationally intensive.

Question 5. We will estimate test error of logistic regression model using validation set approach.

a) Fit a logistic regression model that uses income and balance to predict default.

library(ISLR2)
attach(Default)
set.seed(1)
glm.fit=glm(default~income + balance, family=binomial, data=Default)
summary(glm.fit)
## 
## Call:
## glm(formula = default ~ income + balance, family = binomial, 
##     data = Default)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4725  -0.1444  -0.0574  -0.0211   3.7245  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
## income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
## balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1579.0  on 9997  degrees of freedom
## AIC: 1585
## 
## Number of Fisher Scoring iterations: 8

b) Using validation set approach, estimate the test error of this model.

0.0244

train= sample(dim(Default)[1], 0.5*dim(Default)[1])
glm.fit = glm(default~income + balance, data = Default, subset=train, family=binomial)
glm.prob = predict(glm.fit, Default[-train,], type = "response")
glm.pred = rep("No", dim(Default)[1])
glm.pred[glm.prob > 0.5] = "Yes"
mean(glm.pred != Default[-train,]$default)
## [1] 0.0254

c) Repeat process (b) three times, using three different splits of the observations into a training set and validation set. Comment on results obtained.

There appears to be some minor variability among the validation estimate of the test error rates.

train= sample(dim(Default)[1], 0.5*dim(Default)[1])
glm.fit = glm(default~income + balance, data = Default, subset=train, family=binomial)
glm.prob = predict(glm.fit, Default[-train,], type = "response")
glm.pred = rep("No", dim(Default)[1])
glm.pred[glm.prob > 0.5] = "Yes"
mean(glm.pred != Default[-train,]$default)
## [1] 0.0274
train= sample(dim(Default)[1], 0.5*dim(Default)[1])
glm.fit = glm(default~income + balance, data = Default, subset=train, family=binomial)
glm.prob = predict(glm.fit, Default[-train,], type = "response")
glm.pred = rep("No", dim(Default)[1])
glm.pred[glm.prob > 0.5] = "Yes"
mean(glm.pred != Default[-train,]$default)
## [1] 0.0244
train= sample(dim(Default)[1], 0.5*dim(Default)[1])
glm.fit = glm(default~income + balance, data = Default, subset=train, family=binomial)
glm.prob = predict(glm.fit, Default[-train,], type = "response")
glm.pred = rep("No", dim(Default)[1])
glm.pred[glm.prob > 0.5] = "Yes"
mean(glm.pred != Default[-train,]$default)
## [1] 0.0244

d) Consider a logistic regression model that predict the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate.

The addition of the dummy variable does not significantly change the test error rate.

train= sample(dim(Default)[1], 0.5*dim(Default)[1])
glm.fit = glm(default~income + balance + student, data = Default, subset=train, family=binomial)
glm.prob = predict(glm.fit, Default[-train,], type = "response")
glm.pred = rep("No", dim(Default)[1])
glm.pred[glm.prob > 0.5] = "Yes"
mean(glm.pred != Default[-train,]$default)
## [1] 0.0278

Question 6. We continue to consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. In particular, we will now compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Set random seed before beginning analysis.

a) Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple regression model that uses both predictors.

The standard error estimates are .617, 7.02 10^(-6), and 3.1510^(-4).

attach(Default)
## The following objects are masked from Default (pos = 3):
## 
##     balance, default, income, student
set.seed(1)
train = sample(dim(Default)[1],0.5*dim(Default)[1])
glm.fit = glm(default ~ income + balance, data = Default, family = binomial, subset = train)
summary(glm.fit)
## 
## Call:
## glm(formula = default ~ income + balance, family = binomial, 
##     data = Default, subset = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5830  -0.1428  -0.0573  -0.0213   3.3395  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.194e+01  6.178e-01 -19.333  < 2e-16 ***
## income       3.262e-05  7.024e-06   4.644 3.41e-06 ***
## balance      5.689e-03  3.158e-04  18.014  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1523.8  on 4999  degrees of freedom
## Residual deviance:  803.3  on 4997  degrees of freedom
## AIC: 809.3
## 
## Number of Fisher Scoring iterations: 8

b) Write a function, boot.fn(), that takes as input the Default data set as well as an index of the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.

boot.fn = function(data, index) {
  coef(glm(default ~ income + balance, data = data, family = binomial, subset = index))  
}

c) Use the boot() function together with your boot.fn() function to estimate the standard errors of the logistic regression coefficients for income and balance.

library(boot)
set.seed(1)
boot(Default, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##          original        bias     std. error
## t1* -1.154047e+01 -3.945460e-02 4.344722e-01
## t2*  2.080898e-05  1.680317e-07 4.866284e-06
## t3*  5.647103e-03  1.855765e-05 2.298949e-04

d) Comment on the estimated standard errors obtained using the glm() function and using your bootstrap function.

The standard error estimates for the linear regression model were .617, 7.0210^(-6), and 3.1510^(-4). The standard error estimates for the bootstrap function are .434, 4.8610^(-6), and 2.2910^(-4). There appear to be some variances across the estimates.

Question 9. We will now be using the Boston housing data set.

a) Based on this data set, provide an estimate for the population mean of medv.

library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
## 
##     Boston
attach(Boston)
mu.pop = mean(Boston$medv)
mu.pop
## [1] 22.53281

b) Provide an estimate of the standard error of (mu hat). Interpret the result. (We can compute the standard error of the sample mean by dividing the same standard deviation by the square root of the number of observations.)

st.err = sd(Boston$medv)/sqrt(dim(Boston)[1])
st.err
## [1] 0.4088611

c) Now estimate the standard error of (mu hat) using the bootstrap. How does this compare to part b?

The estimated standard errors appear to be similar.

set.seed(1)
boot.fn = function(data, index) {
  mu = mean(data[index])
  return(mu)
}
boot(Boston$medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 22.53281 0.007650791   0.4106622

d) Based on bootstrap estimate from part (c), provide a 95% confidence interval for the mean of medv. Compare it to the results obtained using t.test(Boston$medv).

t.test(Boston$medv)
## 
##  One Sample t-test
## 
## data:  Boston$medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  21.72953 23.33608
## sample estimates:
## mean of x 
##  22.53281
CI.mu = c(22.53-2*0.4119, 22.53+2*0.4119)
CI.mu
## [1] 21.7062 23.3538

e) Based on this data set, provide an estimate for the median value of medv in the population.

median(Boston$medv)
## [1] 21.2

f) Estimate the standard error of (mu med). Estimate the standard error of the median using the bootstrap. Comment on your findings.

set.seed(1)
boot.fn = function(data, index) {
   mu <- mean(data[index])
    return (mu)
}
boot(Boston$medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 22.53281 0.007650791   0.4106622

g) Based on this data set, provide an estimate for the tenth percentile of medv in Boston data, (use the quantile function).

quantile(Boston$medv, c(0.1))
##   10% 
## 12.75

h) Use the bootstrap method to estimate the standard error of (mu 0.1). Comment on your findings.

The estimated tenth percentile value of 22.5, which does not equal the value obtained in (g) with a standard error of .4024.

boot.fun = function(data, index) {
  mu = quantile(data[index], c(0.1))
  return (mu)
}
boot(Boston$medv, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston$medv, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original      bias    std. error
## t1* 22.53281 -0.02542806   0.4023801