library(tidyr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
  1. import data from github
mydata <- read.csv("https://raw.githubusercontent.com/arinolan/Nolan_Project-2/main/Untidy_Dog_Data.csv")

mydata
##    Breed    Weight           Color
## 1    Lab     90lbs          yellow
## 2  Yorki 10 pounds black and brown
## 3 Aussie     60lbs            blue
## 4  Corgi        35           beige
## 5  Husky     40kgs           white
  1. clean data
kgs_calc <- 40 * 2.2
df_mydata <- mydata

df_mydata$Weight[df_mydata$Weight == '90lbs'] <- 90
df_mydata$Weight[df_mydata$Weight == '10 pounds'] <- 10
df_mydata$Weight[df_mydata$Weight == '60lbs'] <- 60
df_mydata$Weight[df_mydata$Weight == '35'] <- 35
df_mydata$Weight[df_mydata$Weight == '40kgs'] <- kgs_calc

df_mydata
##    Breed Weight           Color
## 1    Lab     90          yellow
## 2  Yorki     10 black and brown
## 3 Aussie     60            blue
## 4  Corgi     35           beige
## 5  Husky     88           white
  1. analysis
  1. which dog breeds are less than 50lbs?
  2. which dog breeds are heavier than 50lbs?
df_mydata[order(as.numeric(as.character(df_mydata$Weight))),]
##    Breed Weight           Color
## 2  Yorki     10 black and brown
## 4  Corgi     35           beige
## 3 Aussie     60            blue
## 5  Husky     88           white
## 1    Lab     90          yellow
small <- df_mydata %>%
  filter(Weight < 50)
small$Breed
## [1] "Yorki" "Corgi"
large <- df_mydata %>%
  filter(Weight > 50)
large$Breed
## [1] "Lab"    "Aussie" "Husky"