# library(gtools)
library(matlib)
\[ For\ 1\leq j\leq k,m(j)=\frac{(k-j+1)^{n}-(k-j)^{n}}{k^{n}} \]
What is the probability that the machine will fail after 8 years?. Provide also the expected value and standard deviation. Model as a geometric. (Hint: the probability is equivalent to not failing during the first 8 years..)
\[ Probability\ Formula: P(X=x)=(1-p)^{n-1}\ast p \]
p=1/10
x=8
n=9
(prob_8y = (1-p)^(n-1) * p)
## [1] 0.04304672
(dgeom(x,p))
## [1] 0.04304672
\[ Expected\ Value\ Formula:\ E(X)=\frac{1}{p}\ or\ p^{-1} \]
p=1/10
(EV=1/p)
## [1] 10
(EV=p^-1)
## [1] 10
\[ Standard\ Deviation\ Formula: sd=\sqrt{\frac{1-p}{p^{2}} } \]
(sd = sqrt((1-p)/p^2))
## [1] 9.486833
\[ Probability\ as\ Exponential:P(X>=8)=e^{\frac{-k}{\mu } } \]
k=8
lambda=1/10
mu=1/lambda
(prob_8y=exp((-k/(mu))))
## [1] 0.449329
\[ Expected\ Value:E[X]=u=\frac{1}{\lambda } =10,where\ lambda =\frac{1}{10} \]
(EV=mu)
## [1] 10
\[ Standard\ Deviation:sd=\sqrt{\frac{1}{{}^{\lambda^{2} }} } \]
(sd=sqrt(1/lambda^2))
## [1] 10
\[ Probability:P(X>8)=1-p^{x}(1-p)^{n-x} \]
(n=10)
## [1] 10
(x=8)
## [1] 8
(choose(n,x)*p^x*((1-p)^(n-x)))
## [1] 3.645e-07
\[ Expected\ Value:E[X]=np \]
(n*p)
## [1] 1
\[ Standard\ Deviation\ Formula: \sigma =\sqrt{npq} \ where\ q=1-p \]
q=1-p
(sd = sqrt(n*p*q))
## [1] 0.9486833
t=1
x=8
(lambda=(n*p)/t)
## [1] 1
(p_pois=((lambda^x)*(exp(-lambda)))/factorial(x))
## [1] 9.123994e-06
\[ E[X]=\lambda \]
(lambda)
## [1] 1
\[ sd=\sqrt{\lambda } \]
(sd=sqrt(lambda))
## [1] 1