Execute the following cell to load the tidyverse library:

library(tidyverse)

Execute the following cell to load the data. Refer to this website http://openmv.net/info/food-texture for data description:

file = 'http://openmv.net/file/food-texture.csv'
foodData = read.csv(file, header = TRUE, row.names = 1)

Modify the data frame

# Rename Oil column to OilPercentage
foodData = foodData %>% rename(OilPercentage = Oil)
# Modify crispy column to reflect high (0) and low (1) crispness
foodData = foodData %>% mutate(Crispy = ifelse(Crispy > 11, 'high', 'low'))
# Change Crispy column to factor type
foodData['Crispy'] = lapply(foodData['Crispy'], factor)

Make a scatter plot between Density (x-axis) and OilPercentage (y-axis). What do you observe from this plot?

p1 = ggplot(data = foodData , aes(x = Density, y = OilPercentage)) +
  geom_point(size = 2) 
p1

LS0tDQp0aXRsZTogIldlYmluYXItMiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyMgRXhlY3V0ZSB0aGUgZm9sbG93aW5nIGNlbGwgdG8gbG9hZCB0aGUgdGlkeXZlcnNlIGxpYnJhcnk6DQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KYGBgDQoNCiMjIyMgRXhlY3V0ZSB0aGUgZm9sbG93aW5nIGNlbGwgdG8gbG9hZCB0aGUgZGF0YS4gUmVmZXIgdG8gdGhpcyB3ZWJzaXRlIGh0dHA6Ly9vcGVubXYubmV0L2luZm8vZm9vZC10ZXh0dXJlIGZvciBkYXRhIGRlc2NyaXB0aW9uOg0KYGBge3J9DQpmaWxlID0gJ2h0dHA6Ly9vcGVubXYubmV0L2ZpbGUvZm9vZC10ZXh0dXJlLmNzdicNCmZvb2REYXRhID0gcmVhZC5jc3YoZmlsZSwgaGVhZGVyID0gVFJVRSwgcm93Lm5hbWVzID0gMSkNCmBgYA0KDQojIyMjIFByaW50IHN0cnVjdHVyZSBvZiBkYXRhZnJhbWUNCmBgYHtyfQ0Kc3RyKGZvb2REYXRhKQ0KYGBgDQoNCiMjIyMgUHJpbnQgZmlyc3QgNSBzYW1wbGVzIG9mIGRhdGEgZnJhbWUNCmBgYHtyfQ0KaGVhZChmb29kRGF0YSwgbiA9IDUpDQpgYGANCg0KIyMjIyBNb2RpZnkgdGhlIGRhdGEgZnJhbWUNCmBgYHtyfQ0KIyBSZW5hbWUgT2lsIGNvbHVtbiB0byBPaWxQZXJjZW50YWdlDQpmb29kRGF0YSA9IGZvb2REYXRhICU+JSByZW5hbWUoT2lsUGVyY2VudGFnZSA9IE9pbCkNCmBgYA0KDQpgYGB7cn0NCiMgTW9kaWZ5IGNyaXNweSBjb2x1bW4gdG8gcmVmbGVjdCBoaWdoICgwKSBhbmQgbG93ICgxKSBjcmlzcG5lc3MNCmZvb2REYXRhID0gZm9vZERhdGEgJT4lIG11dGF0ZShDcmlzcHkgPSBpZmVsc2UoQ3Jpc3B5ID4gMTEsICdoaWdoJywgJ2xvdycpKQ0KYGBgDQoNCmBgYHtyfQ0KIyBDaGFuZ2UgQ3Jpc3B5IGNvbHVtbiB0byBmYWN0b3IgdHlwZQ0KZm9vZERhdGFbJ0NyaXNweSddID0gbGFwcGx5KGZvb2REYXRhWydDcmlzcHknXSwgZmFjdG9yKQ0KYGBgDQoNCiMjIyMgUHJpbnQgc3RydWN0dXJlIG9mIG1vZGlmaWVkIGRhdGEgZnJhbWUNCmBgYHtyfQ0Kc3RyKGZvb2REYXRhKQ0KYGBgDQoNCiMjIyMgTWFrZSBhIHNjYXR0ZXIgcGxvdCBiZXR3ZWVuIERlbnNpdHkgKHgtYXhpcykgYW5kIE9pbFBlcmNlbnRhZ2UgKHktYXhpcykuIFdoYXQgZG8geW91IG9ic2VydmUgZnJvbSB0aGlzIHBsb3Q/DQpgYGB7cn0NCnAxID0gZ2dwbG90KGRhdGEgPSBmb29kRGF0YSAsIGFlcyh4ID0gRGVuc2l0eSwgeSA9IE9pbFBlcmNlbnRhZ2UpKSArDQogIGdlb21fcG9pbnQoc2l6ZSA9IDIpIA0KcDENCmBgYA0KDQojIyMjDQpgYGB7cn0NCg0KYGBgDQoNCiMjIyMNCmBgYHtyfQ0KDQpgYGANCg0KIyMjIw0KYGBge3J9DQoNCmBgYA0KDQojIyMjDQpgYGB7cn0NCg0KYGBgDQoNCiMjIyMNCmBgYHtyfQ0KDQpgYGANCg0KIyMjIw0KYGBge3J9DQoNCmBgYA0KDQoNCiMjIyMNCmBgYHtyfQ0KDQpgYGANCg0KDQojIyMjDQpgYGB7cn0NCg0KYGBgDQoNCg0KIyMjIw0KYGBge3J9DQoNCmBgYA0KDQoNCiMjIyMNCmBgYHtyfQ0KDQpgYGANCg0KDQojIyMjDQpgYGB7cn0NCg0KYGBgDQoNCg0KIyMjIw0KYGBge3J9DQoNCmBgYA0KDQoNCiMjIyMNCmBgYHtyfQ0KDQpgYGANCg0KDQo=