Type_1Fluid<-c(17.6, 18.9, 16.3, 17.4, 20.1, 21.6)
Type_2Fluid<-c(16.9, 15.3, 18.6, 17.1, 19.5, 20.3)
Type_3Fluid<-c(21.4, 23.6, 19.4, 18.5, 20.5, 22.3)
Type_4Fluid<-c(19.3, 21.1, 16.9, 17.5, 18.3, 19.8)
dat1<-data.frame(Type_1Fluid,Type_2Fluid,Type_3Fluid,Type_4Fluid)
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dat<-pivot_longer(data = dat1,c(Type_1Fluid,Type_2Fluid,Type_3Fluid,Type_4Fluid))
colnames(dat)<-c("TypesofFluids","Values")
dat$TypesofFluids<-as.factor(dat$TypesofFluids)
qqnorm(dat$Values)
qqline(dat$Values)
anova_model<-aov(dat$Values~dat$TypesofFluids,data=dat)
summary(anova_model)
## Df Sum Sq Mean Sq F value Pr(>F)
## dat$TypesofFluids 3 30.16 10.05 3.047 0.0525 .
## Residuals 20 65.99 3.30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
residules<-resid(anova_model)
plot(anova_model)
(a) Is there any indication that the fluids differ? Use alpha = 0.05.
(b) Which fluid would you select, given that the objective is long life?
(c) Analyze the residuals from this experiment. Are the basic analysis of variance assumptions satisfied?
Type_1Fluid<-c(17.6, 18.9, 16.3, 17.4, 20.1, 21.6)
Type_2Fluid<-c(16.9, 15.3, 18.6, 17.1, 19.5, 20.3)
Type_3Fluid<-c(21.4, 23.6, 19.4, 18.5, 20.5, 22.3)
Type_4Fluid<-c(19.3, 21.1, 16.9, 17.5, 18.3, 19.8)
dat1<-data.frame(Type_1Fluid,Type_2Fluid,Type_3Fluid,Type_4Fluid)
library(tidyr)
library(dplyr)
dat<-pivot_longer(data = dat1,c(Type_1Fluid,Type_2Fluid,Type_3Fluid,Type_4Fluid))
colnames(dat)<-c("TypesofFluids","Values")
dat$TypesofFluids<-as.factor(dat$TypesofFluids)
qqnorm(dat$Values)
qqline(dat$Values)
boxplot(dat1)
anova_model<-aov(dat$Values~dat$TypesofFluids,data=dat)
summary(anova_model)
residules<-resid(anova_model)
plot(anova_model)
3.51 and 3.52 . Use the Kruskal–Wallis test for the experiment in Problem 3.23. Compare the conclusions obtained with those from the usual analysis of variance.
kruskal.test(dat$Values~dat$TypesofFluids,data=dat)
##
## Kruskal-Wallis rank sum test
##
## data: dat$Values by dat$TypesofFluids
## Kruskal-Wallis chi-squared = 6.2177, df = 3, p-value = 0.1015
kruskal.test(dat$Values~dat$TypesofFluids,data=dat)
M1<-c(110, 157, 194, 178)
M2<-c(1, 2, 4, 18)
M3<-c(880, 1256, 5276, 4355)
M4<-c(495, 7040, 5307, 10050)
M5<-c(7, 5, 29, 2)
dat1<-cbind.data.frame(M1,M2,M3,M4,M5)
library(tidyr)
library(dplyr)
dat<-pivot_longer(dat1,c(M1,M2,M3,M4,M5))
dat$name<-as.factor(dat$name)
(a) Do all five materials have the same effect on mean failure time?
boxplot(dat1)
#(a)Answer ## Comments: The box plot is incomparable with each other. From the box plot we could see that the sample mean contribution is by Material 3 and Material 4.
(b) Plot the residuals versus the predicted response. Construct a normal probability plot of the residuals. What information is conveyed by these plots?
model_anova<-aov(value~name , data = dat)
summary(model_anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## name 4 103191489 25797872 6.191 0.00379 **
## Residuals 15 62505657 4167044
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
residules<-resid(model_anova)
plot(model_anova)
### Plot of Residuals vs Predicted Responce.
residuals <- resid(model_anova)
qqplot(dat$value, residuals, main = "Residuals vs Predicted Responce", xlab = "Predicted Responce", ylab = "Residuals")
qqline(dat$value, residuals)
## Warning in if (datax) {: the condition has length > 1 and only the first element
## will be used
plot(model_anova)
(c) Based on your answer to part (b) conduct another analysis of the failure time data and draw appropriate conclusions.
library(agricolae)
## Warning: package 'agricolae' was built under R version 4.1.3
model_LSD<-LSD.test(model_anova, "name", console = T)
##
## Study: model_anova ~ "name"
##
## LSD t Test for value
##
## Mean Square Error: 4167044
##
## name, means and individual ( 95 %) CI
##
## value std r LCL UCL Min Max
## M1 159.75 36.463452 4 -2015.75 2335.25 110 194
## M2 6.25 7.932003 4 -2169.25 2181.75 1 18
## M3 2941.75 2201.405971 4 766.25 5117.25 880 5276
## M4 5723.00 3998.435444 4 3547.50 7898.50 495 10050
## M5 10.75 12.338963 4 -2164.75 2186.25 2 29
##
## Alpha: 0.05 ; DF Error: 15
## Critical Value of t: 2.13145
##
## least Significant Difference: 3076.622
##
## Treatments with the same letter are not significantly different.
##
## value groups
## M4 5723.00 a
## M3 2941.75 ab
## M1 159.75 b
## M5 10.75 b
## M2 6.25 b
model_LSD$groups
## value groups
## M4 5723.00 a
## M3 2941.75 ab
## M1 159.75 b
## M5 10.75 b
## M2 6.25 b
## By above code Method4,Method3,Method1 are significantly differ in mean. So we can reject null hypothesis by fisher's test.
##Source Code
M1<-c(110, 157, 194, 178)
M2<-c(1, 2, 4, 18)
M3<-c(880, 1256, 5276, 4355)
M4<-c(495, 7040, 5307, 10050)
M5<-c(7, 5, 29, 2)
dat1<-cbind.data.frame(M1,M2,M3,M4,M5)
library(tidyr)
library(dplyr)
dat<-pivot_longer(dat1,c(M1,M2,M3,M4,M5))
dat$name<-as.factor(dat$name)
boxplot(dat1)
model_anova<-aov(value~name , data = dat)
summary(model_anova)
residules<-resid(model_anova)
plot(model_anova)
### Plot of Residuals vs Predicted Responce.
residuals <- resid(model_anova)
qqplot(dat$value, residuals, main = "Residuals vs Predicted Responce", xlab = "Predicted Responce", ylab = "Residuals")
qqline(dat$value, residuals)
library(agricolae)
model_LSD<-LSD.test(model_anova, "name", console = T)
model_LSD$groups
## By above code Method4,Method3,Method1 are significantly differ in mean. So we can reject null hypothesis by fisher's test.
M_1<-c(31, 10, 21, 4, 1)
M_2<-c(62, 40, 24, 30, 35)
M_3<-c(53, 27, 120, 97, 68)
data1<-cbind.data.frame(M_1, M_2, M_3)
library(tidyr)
data2 <- pivot_longer(data = data1, c(M_1, M_2, M_3))
colnames(data2)<- c("Method", "Count")
data2$Method<-as.factor(data2$Method)
(a) Do all methods have the same effect on mean particle count
boxplot(data1)
(b) Plot the residuals versus the predicted response.Construct a normal probability plot of the residuals.Are there potential concerns about the validity of the assumptions?
anova_model1<-aov(Count ~ Method, data = data2)
residules2<-resid(anova_model1)
plot(anova_model1)
(c) Based on your answer to part (b) conduct another analysis of the particle count data and draw appropriate conclusion
library(agricolae)
LSD_model1<-LSD.test(anova_model1, "Method", console = T)
##
## Study: anova_model1 ~ "Method"
##
## LSD t Test for Count
##
## Mean Square Error: 566.3333
##
## Method, means and individual ( 95 %) CI
##
## Count std r LCL UCL Min Max
## M_1 13.4 12.46194 5 -9.788411 36.58841 1 31
## M_2 38.2 14.56709 5 15.011589 61.38841 24 62
## M_3 73.0 36.48972 5 49.811589 96.18841 27 120
##
## Alpha: 0.05 ; DF Error: 12
## Critical Value of t: 2.178813
##
## least Significant Difference: 32.79336
##
## Treatments with the same letter are not significantly different.
##
## Count groups
## M_3 73.0 a
## M_2 38.2 b
## M_1 13.4 b
LSD_model1$groups
## Count groups
## M_3 73.0 a
## M_2 38.2 b
## M_1 13.4 b
plot(LSD_model1)
M_1<-c(31, 10, 21, 4, 1)
M_2<-c(62, 40, 24, 30, 35)
M_3<-c(53, 27, 120, 97, 68)
data1<-cbind.data.frame(M_1, M_2, M_3)
library(tidyr)
data2 <- pivot_longer(data = data1, c(M_1, M_2, M_3))
colnames(data2)<- c("Method", "Count")
data2$Method<-as.factor(data2$Method)
boxplot(data1)
anova_model1<-aov(Count ~ Method, data = data2)
residules2<-resid(anova_model1)
plot(anova_model1)
library(agricolae)
LSD_model1<-LSD.test(anova_model1, "Method", console = T)
LSD_model1$groups
plot(LSD_model1)
comments; As from above all points are close to normal there are not much deviated from normal line. Therefore normality assumptions meets.