library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
url = 'https://raw.githubusercontent.com/AlphaCurse/CyberThreats/main/cyberthreats.csv'
df = read.csv(url)
head(df)
## ï..Year Adware Backdoor Ransomware Trojan
## 1 2022 2,242 356 2352 680
## 2 2016 2,679 664 3634 429
## 3 2020 1,853 523 3,122 534
## 4 2019 1634 354 2,685 254
## 5 2015 1,263 235 1,547 336
## 6 2017 856 273 1785 346
colnames(df)[1] = 'Year'
df = df[order(-df$Year),]
df$Adware = as.integer(gsub(",","",df$Adware))
df$Ransomware = as.integer(gsub(",","",df$Ransomware))
head(df)
## Year Adware Backdoor Ransomware Trojan
## 1 2022 2242 356 2352 680
## 7 2021 945 195 2073 264
## 3 2020 1853 523 3122 534
## 4 2019 1634 354 2685 254
## 8 2018 735 152 1863 174
## 6 2017 856 273 1785 346
df$Total = rowSums(df[ , c(2, 3, 4, 5)], na.rm = TRUE)
head(df)
## Year Adware Backdoor Ransomware Trojan Total
## 1 2022 2242 356 2352 680 5630
## 7 2021 945 195 2073 264 3477
## 3 2020 1853 523 3122 534 6032
## 4 2019 1634 354 2685 254 4927
## 8 2018 735 152 1863 174 2924
## 6 2017 856 273 1785 346 3260
Below, I have calculated the probability of cyber threats occurring from 2017 to 2022. As we can see, 2017 has a 12.42% probability, 2018 has a 11.14% probability, 2019 has a 18.77% probability, 2020 has a 22.98% probability, 2021 has a 13.25% probability, and 2022 has a 21.45% probability. Due to COVID-19 in 2018, 2019 and 2020, we can see an increase in cyber threats that quickly drops in 2021. Seeing as many employers kept their employees working remotely, the probability of receiving a cyber attack is higher than when employees were inhouse.
year_2022 = (5630/(5630+3477+6032+4927+2924+3260))*100
year_2021 = (3477/(5630+3477+6032+4927+2924+3260))*100
year_2020 = (6032/(5630+3477+6032+4927+2924+3260))*100
year_2019 = (4927/(5630+3477+6032+4927+2924+3260))*100
year_2018 = (2924/(5630+3477+6032+4927+2924+3260))*100
year_2017 = (3260/(5630+3477+6032+4927+2924+3260))*100
year_2022
## [1] 21.44762
year_2021
## [1] 13.24571
year_2020
## [1] 22.97905
year_2019
## [1] 18.76952
year_2018
## [1] 11.13905
year_2017
## [1] 12.41905