The data set is from a psychiatric study focusing on the clinical response over time in 66 depressed patients. Depression is often classified into two types: non-endogenous depression, which is associated with some tragic life event such as the death of a close friend or family member, or endogenous depression, which is not a result of any specific event. Antidepressant medications are held to be more effective for endogenous depression. In this sample, 29 patients were diagnosed as non-endogenous, and 37 patients were endogenous.
Following a placebo period of 1 week, patients received 225 mg/day doses of imipramine for 4 weeks. Patients were rated with the Hamilton depression (HD) rating scale twice during the baseline placebo week (at the start and end of this week), as well as at the end of each of the 4 treatment weeks of the study.
The number of patients with all measures at each of the weeks fluctuated. Only 46 had complete data at all time points.
For the 17-item version, score on the Hamilton Scale goes from 0 to 54. One suggestion is that scores between 0 and 6 indicate a normal person with regard to depression, scores between 7 and 17 indicate mild depression, scores between 18 and 24 indicate moderate depression, and scores over 24 indicate severe depression.
# data input
# 按照"ID", "Endog", "week", "HamD"排列
# 使用names()重新命名
dta <- read.csv("C:/Users/Li jing-yi/Desktop/riesby_data.csv")
dta <- dta[, c("ID", "Endog", "week", "HamD")]
names(dta) <- c("ID", "Endogenous", "Week", "Score")head(dta) ID Endogenous Week Score
1 101 0 0 26
2 101 0 1 22
3 101 0 2 18
4 101 0 3 7
5 101 0 4 4
6 101 0 5 3
# 使用str()
# 列出資料內每個欄位
str(dta)'data.frame': 396 obs. of 4 variables:
$ ID : int 101 101 101 101 101 101 103 103 103 103 ...
$ Endogenous: int 0 0 0 0 0 0 0 0 0 0 ...
$ Week : int 0 1 2 3 4 5 0 1 2 3 ...
$ Score : int 26 22 18 7 4 3 33 24 15 24 ...
# verify the number of endogenous cases
# 資料處理中常用到的函式
aggregate(Endogenous ~ ID, data=dta, mean)[,2] |> sum()[1] 37
# make a copy of the original data in the long format
dtaL <- dta %>%
dplyr::filter(!is.na(Score)) %>% # remove NA or missing scores
dplyr::mutate(ID = as.factor(ID),
Endogenous = as.factor(Endogenous) %>%
forcats::fct_recode("N" = "0",
"Y" = "1")) %>%
dplyr::arrange(ID, Week) # sort observations# long to wide format
dtaw <- dtaL %>%
tidyr::pivot_wider(names_from = Week,
names_prefix = "Score_",
values_from = Score)# 有Depression的人為26.1%(37人)
# 沒有Depression的人為43.9%(29人)
dtaw %>%
furniture::table1("Endogenous Depression" = Endogenous,
align="c",
output = "markdown")| Mean/Count (SD/%) | |
|---|---|
| n = 66 | |
| Endogenous Depression | |
| N | 29 (43.9%) |
| Y | 37 (56.1%) |
# number of patients by week
# 列表以顯示一週有幾個病人
dtaL %>%
dplyr::group_by(Week) %>%
dplyr::tally() %>%
knitr::kable()| Week | n |
|---|---|
| 0 | 61 |
| 1 | 63 |
| 2 | 65 |
| 3 | 65 |
| 4 | 63 |
| 5 | 58 |
# which indices are true and return array indices
which(is.na(dtaw), arr.ind=TRUE) row col
[1,] 9 3
[2,] 10 3
[3,] 12 3
[4,] 40 3
[5,] 65 3
[6,] 24 4
[7,] 39 4
[8,] 66 4
[9,] 35 5
[10,] 18 6
[11,] 6 7
[12,] 23 7
[13,] 66 7
[14,] 5 8
[15,] 8 8
[16,] 22 8
[17,] 26 8
[18,] 30 8
[19,] 43 8
[20,] 50 8
[21,] 61 8
# compare original data set with missing removed
# setdiff(差),求向量x與向量y中不同的元素(只取x中不同的元素)
# 下列圖表表示,有刪除missing與沒刪除,兩者之間的差別
dtaw %>%
dplyr::setdiff(., na.omit(.))# A tibble: 20 x 8
ID Endogenous Score_0 Score_1 Score_2 Score_3 Score_4 Score_5
<fct> <fct> <int> <int> <int> <int> <int> <int>
1 106 Y 21 25 23 18 20 NA
2 107 Y 21 21 16 19 NA 6
3 113 N 21 23 19 23 23 NA
4 114 N NA 17 11 13 7 7
5 115 Y NA 16 16 16 16 11
6 118 Y NA 26 18 18 14 11
7 304 Y 21 27 29 NA 12 24
8 310 Y 24 19 11 7 6 NA
9 311 Y 20 16 21 17 NA 15
10 312 Y 17 NA 18 17 17 6
11 315 Y 27 21 17 13 5 NA
12 322 Y 28 21 25 32 34 NA
13 334 N 31 25 NA 7 8 11
14 339 Y 27 NA 14 12 11 12
15 344 Y NA 21 12 13 13 18
16 347 Y 18 15 14 10 8 NA
17 354 Y 28 27 27 26 23 NA
18 604 N 27 27 13 5 7 NA
19 609 Y NA 25 22 14 15 2
20 610 Y 34 NA 33 23 NA 11
# 處理缺失值,如果需要快速找出缺失值,或是簡單查看缺失值占比和分布
# 可使用naniar
dtaw %>%
naniar::gg_miss_upset(sets = c("Score_5_NA",
"Score_4_NA",
"Score_3_NA",
"Score_2_NA",
"Score_1_NA",
"Score_0_NA"),
keep.order = TRUE)# 顯示每個禮拜的描述性統計
dtaw %>%
dplyr::group_by(Endogenous) %>%
furniture::table1("Baseline" = Score_0,
"Week 1" = Score_1,
"Week 2" = Score_2,
"Week 3" = Score_3,
"Week 4" = Score_4,
"Week 5" = Score_5,
total = TRUE,
test = TRUE,
na.rm = FALSE, # default: COMPLETE CASES ONLY
digits = 2,
align = "c",
output = "markdown",
caption = "Weekly Hamilton Depression Scores by Diagnosis for all participants")| Total | N | Y | P-Value | |
|---|---|---|---|---|
| n = 66 | n = 29 | n = 37 | ||
| Baseline | 0.301 | |||
| 23.44 (4.53) | 22.79 (4.12) | 24.00 (4.85) | ||
| Week 1 | 0.033 | |||
| 21.84 (4.70) | 20.48 (3.83) | 23.00 (5.10) | ||
| Week 2 | 0.095 | |||
| 18.31 (5.49) | 17.00 (4.35) | 19.30 (6.08) | ||
| Week 3 | 0.23 | |||
| 16.42 (6.42) | 15.34 (6.17) | 17.28 (6.56) | ||
| Week 4 | 0.298 | |||
| 13.62 (6.97) | 12.62 (6.72) | 14.47 (7.17) | ||
| Week 5 | 0.48 | |||
| 11.95 (7.22) | 11.22 (6.34) | 12.58 (7.96) |
data_sum_all <- dtaL %>%
dplyr::group_by(Endogenous, Week) %>% # specify the groups
dplyr::summarise(Score_n = n(), # count of valid scores
Score_mean = mean(Score), # mean score
Score_sd = sd(Score), # standard deviation of scores
Score_sem = Score_sd / sqrt(Score_n)) # se for the mean data_sum_all |> knitr::kable()| Endogenous | Week | Score_n | Score_mean | Score_sd | Score_sem |
|---|---|---|---|---|---|
| N | 0 | 28 | 22.7857 | 4.12182 | 0.778951 |
| N | 1 | 29 | 20.4828 | 3.83239 | 0.711656 |
| N | 2 | 28 | 17.0000 | 4.34614 | 0.821342 |
| N | 3 | 29 | 15.3448 | 6.17180 | 1.146075 |
| N | 4 | 29 | 12.6207 | 6.72104 | 1.248066 |
| N | 5 | 27 | 11.2222 | 6.33873 | 1.219889 |
| Y | 0 | 33 | 24.0000 | 4.84768 | 0.843873 |
| Y | 1 | 34 | 23.0000 | 5.09902 | 0.874475 |
| Y | 2 | 37 | 19.2973 | 6.08214 | 0.999899 |
| Y | 3 | 36 | 17.2778 | 6.56228 | 1.093713 |
| Y | 4 | 34 | 14.4706 | 7.16572 | 1.228911 |
| Y | 5 | 31 | 12.5806 | 7.95728 | 1.429169 |
# dplyr::select() : 選擇分析的欄位
# cov函式:列與列的協方差,計算共變
dtaw %>%
dplyr::select(starts_with("Score_")) %>%
cov(use = "pairwise.complete.obs") %>%
round(3) Score_0 Score_1 Score_2 Score_3 Score_4 Score_5
Score_0 20.551 10.115 10.139 10.086 7.191 6.278
Score_1 10.115 22.071 12.277 12.550 10.264 7.720
Score_2 10.139 12.277 30.091 25.126 24.626 18.384
Score_3 10.086 12.550 25.126 41.153 37.339 23.992
Score_4 7.191 10.264 24.626 37.339 48.594 30.513
Score_5 6.278 7.720 18.384 23.992 30.513 52.120
# 繪製相關矩陣圖
dtaw %>%
dplyr::select(starts_with("Score_")) %>% # just the outcome(s)
cor(use = "pairwise.complete.obs") %>% # correlation matrix
corrplot::corrplot.mixed(upper = "ellipse")# 針對Endogenous group繪製相關矩陣圖
dtaw %>%
dplyr::filter(Endogenous == "Y") %>% # for the Endogenous group
dplyr::select(starts_with("Score_")) %>%
cor(use = "pairwise.complete.obs") %>%
corrplot::corrplot.mixed(upper = "ellipse")# Use theme_set() to completely override the current theme.
old <- theme_set(theme_minimal())# Time(weeks since baseline)對Hamilton Depression Score可能存在負向相關(Endogenous depression)
ggplot(dtaL, aes(x = Week, y = Score)) +
geom_line(aes(group = ID), alpha=.4, size=rel(.4)) +
facet_grid( ~ Endogenous) +
scale_y_continuous(limits=c(0, 42), breaks=seq(0, 42, by=6))+
labs(x="Time (weeks since baseline)",
y="Hamilton Depression Score",
subtitle="Endogenous depression")# 從無論是否有Endogenous,x和y存在負相關
ggplot(dtaL, aes(x = Week, y = Score, color=Endogenous)) +
stat_summary(fun.data="mean_se", position=position_dodge(width=0.2)) +
stat_summary(aes(group=Endogenous, linetype=Endogenous),
fun = mean,
geom = "line",
position=position_dodge(width=.2)) +
scale_linetype_manual(values = c("solid", "longdash")) +
scale_color_manual(values=c('black','gray50'))+
labs(x="Time (weeks since baseline)",
y="Mean Hamilton Depression Score")+
theme(legend.position = "bottom",
legend.key.width = unit(2, "cm"))# x對y呈現負相關
ggplot(dtaL, aes(x = Week, y = Score)) +
geom_line(aes(group = ID), col='gray', alpha=.5, size=rel(.5)) +
facet_grid( ~ Endogenous) +
geom_smooth(method="loess",
se=FALSE,
formula=y~x,
color="orange") +
geom_smooth(method = "lm",
formula=y~x,
se = FALSE,
color="skyblue")+
scale_y_continuous(limits=c(0, 42), breaks=seq(0, 42, by=6))+
labs(x="Time (weeks since baseline)",
y="Hamilton Depression Score")# 可以發現兩個區間重疊很多
# 兩者之間並不會因為Endogenous有太大的影響
ggplot(dtaL, aes(x = Week,
y = Score,
group = Endogenous,
linetype = Endogenous)) +
geom_smooth(method = "loess",
formula=y~x,
color = "black",
alpha = .2) +
scale_linetype_manual(values = c("solid", "longdash")) +
labs(x = "Time (weeks since baseline)",
y = "Hamilton Depression Scale",
linetype = "Endogenous Depression")+
theme(legend.position = c(1, 1),
legend.justification = c(1.1, 1.1),
legend.background = element_rect(color = "black"),
legend.key.width = unit(1.5, "cm")) # 1 is included whether you type it in or not
m0 <- lme4::lmer(Score ~ 1 + Week + (1 | ID), data=dtaL)# 結果發現m0 fit
texreg::knitreg(m0,
single.row = TRUE,
stars = numeric(0),
caption = "Random Intercepts Model",
caption.above = TRUE,
custom.note = "Model fit w/ REML")| Model 1 | |
|---|---|
| (Intercept) | 23.55 (0.64) |
| Week | -2.38 (0.14) |
| AIC | 2294.73 |
| BIC | 2310.43 |
| Log Likelihood | -1143.36 |
| Num. obs. | 375 |
| Num. groups: ID | 66 |
| Var: ID (Intercept) | 16.45 |
| Var: Residual | 19.10 |
| Model fit w/ REML | |
dtaL %>%
dplyr::mutate(pred_fixed = predict(m0, re.form = NA)) %>% # fixed effects only
dplyr::mutate(pred_wrand = predict(m0)) %>% # fixed and random effects together
ggplot(aes(x = Week, y = Score, group = ID)) +
geom_line(aes(y = pred_wrand,
color = "BLUP",
size = "BLUP",
linetype = "BLUP")) +
geom_line(aes(y = pred_fixed,
color = "Marginal",
size = "Marginal",
linetype = "Marginal")) +
scale_color_manual(name = "Type of Prediction",
values = c("BLUP" = "gray50",
"Marginal" = "blue")) +
scale_size_manual(name = "Type of Prediction",
values = c("BLUP" = .8,
"Marginal" = .5)) +
scale_linetype_manual(name = "Type of Prediction",
values = c("BLUP" = "dotted",
"Marginal" = "solid")) +
labs(x = "Weeks since baseline",
y = "Hamilton Depression Scores")+
theme(legend.position = c(0, 0),
legend.justification = c(-0.1, -0.1),
legend.background = element_rect(color = "black"),
legend.key.width = unit(1.5, "cm"))obs <- dtaL %>%
dplyr::group_by(Week) %>%
dplyr::summarise(observed = mean(Score, na.rm = TRUE))# 求模型(m0)的效果估計
effects::Effect(focal.predictors = "Week",
mod = m0,
xlevels = list(Week = 0:5)) %>%
data.frame() %>%
dplyr::rename(estimated = fit) %>%
dplyr::left_join(obs, by = "Week") %>%
dplyr::select(Week, observed, estimated) %>%
dplyr::mutate(diff = observed - estimated) %>%
pander::pander(caption = "Observed and Estimated Means")| Week | observed | estimated | diff |
|---|---|---|---|
| 0 | 23.44 | 23.55 | -0.109 |
| 1 | 21.84 | 21.18 | 0.6652 |
| 2 | 18.31 | 18.8 | -0.4928 |
| 3 | 16.42 | 16.42 | -0.009553 |
| 4 | 13.62 | 14.05 | -0.4303 |
| 5 | 11.95 | 11.67 | 0.2745 |
# m0的內部一致性為0.463(0.319),非常低
performance::icc(m0) # Intraclass Correlation Coefficient
Adjusted ICC: 0.463
Unadjusted ICC: 0.319
# fit a linear model ignoring patient clusters
# m00 忽略 clusters,僅關注week對score的線性
m00 <- lm(Score ~ Week, data = dtaL)# 比較m00、m0差別,分別為線性模型與多層次模型
# 差別在於有無clusters
texreg::knitreg(list(m00, m0),
custom.model.names = c("Linear model", "Multilevel"),
single.row = TRUE,
stars = numeric(0),
caption = "Random Intercepts Models",
caption.above = TRUE,
custom.note = "")| Linear model | Multilevel | |
|---|---|---|
| (Intercept) | 23.60 (0.55) | 23.55 (0.64) |
| Week | -2.41 (0.18) | -2.38 (0.14) |
| R2 | 0.32 | |
| Adj. R2 | 0.32 | |
| Num. obs. | 375 | 375 |
| AIC | 2294.73 | |
| BIC | 2310.43 | |
| Log Likelihood | -1143.36 | |
| Num. groups: ID | 66 | |
| Var: ID (Intercept) | 16.45 | |
| Var: Residual | 19.10 |
# 計算m00的最大概似估計值
logLik(m00)'log Lik.' -1199.86 (df=3)
sigma(m00)^2[1] 35.3997
VarCorr(m0) %>% print(., comp=c("Variance","Std.Dev."), digits=4) Groups Name Variance Std.Dev.
ID (Intercept) 16.45 4.055
Residual 19.10 4.370
lme4::VarCorr(m0) %>%
print(comp = c("Variance", "Std.Dev")) Groups Name Variance Std.Dev.
ID (Intercept) 16.45 4.055
Residual 19.10 4.370
# m1包含固定效果與隨機效果
m1 <- lme4::lmer(Score ~ 1 + Week + (1 + Week | ID), data = dtaL)# 比較兩種模型(m0,m1)
# AIC: m0 < m1
# BIC: m0 > m1
# 發現m0較為適配
texreg::knitreg(list(m0, m1),
single.row = TRUE,
stars = numeric(0),
custom.model.names = c("Random Intercepts",
" And Random Slopes"),
caption = "MLM: Models fit w/REML",
caption.above = TRUE,
custom.note = "")| Random Intercepts | And Random Slopes | |
|---|---|---|
| (Intercept) | 23.55 (0.64) | 23.58 (0.55) |
| Week | -2.38 (0.14) | -2.38 (0.21) |
| AIC | 2294.73 | 2231.92 |
| BIC | 2310.43 | 2255.48 |
| Log Likelihood | -1143.36 | -1109.96 |
| Num. obs. | 375 | 375 |
| Num. groups: ID | 66 | 66 |
| Var: ID (Intercept) | 16.45 | 12.94 |
| Var: Residual | 19.10 | 12.21 |
| Var: ID Week | 2.13 | |
| Cov: ID (Intercept) Week | -1.48 |
# 以ANOVA進行檢定
# 發現m1較為適配,其結果較為顯著
anova(m0, m1,
model.names = c("Random Intercepts", "Random Intercepts/Slopes"),
refit = TRUE) %>%
pander::pander(caption = "LRT: Significance of Random Slopes")refitting model(s) with ML (instead of REML)
| npar | AIC | BIC | logLik | deviance | Chisq | |
|---|---|---|---|---|---|---|
| Random Intercepts | 4 | 2293 | 2309 | -1143 | 2285 | NA |
| Random Intercepts/Slopes | 6 | 2231 | 2255 | -1110 | 2219 | 66.15 |
| Df | Pr(>Chisq) | |
|---|---|---|
| Random Intercepts | NA | NA |
| Random Intercepts/Slopes | 2 | 4.319e-15 |
dtaL %>%
dplyr::mutate(pred_fixed = predict(m1, re.form = NA)) %>% # fixed effects only
dplyr::mutate(pred_wrand = predict(m1)) %>% # fixed and random effects together
ggplot(aes(x = Week,
y = Score,
group = ID)) +
geom_line(aes(y = pred_wrand,
color = "BLUP",
size = "BLUP",
linetype = "BLUP")) +
geom_line(aes(y = pred_fixed,
color = "Marginal",
size = "Marginal",
linetype = "Marginal")) +
scale_color_manual(name = "Type of Prediction",
values = c("BLUP" = "gray50",
"Marginal" = "blue")) +
scale_size_manual(name = "Type of Prediction",
values = c("BLUP" = .7,
"Marginal" = .5)) +
scale_linetype_manual(name = "Type of Prediction",
values = c("BLUP" = "longdash",
"Marginal" = "solid"))+
labs(x = "Weeks Since Baseline",
y = "Hamilton Depression Scores")+
theme(legend.position = c(0, 0),
legend.justification = c(-0.1, -0.1),
legend.background = element_rect(color = "black"),
legend.key.width = unit(1.5, "cm"))fixef(m1)(Intercept) Week
23.57704 -2.37705
ranef(m1)$ID %>% head() (Intercept) Week
101 1.057202 -2.115138
103 3.670790 -0.483248
104 2.672755 -1.500882
105 -3.041339 0.226450
106 0.315424 1.025475
107 -0.614899 -0.429738
# only the first 6 participantscoef(m1)$ID %>% head() (Intercept) Week
101 24.6342 -4.49219
103 27.2478 -2.86030
104 26.2498 -3.87793
105 20.5357 -2.15060
106 23.8925 -1.35157
107 22.9621 -2.80679
coef(m1)$ID %>%
ggplot(aes(x = Week,
y = `(Intercept)`)) +
geom_point(pch=1, size=rel(.5)) +
geom_hline(yintercept = fixef(m1)["(Intercept)"],
linetype = "dotted") +
geom_vline(xintercept = fixef(m1)["Week"],
linetype = "dotted") +
labs(subtitle = "Estimated random effects",
x = "Weekly Change in Depression (Slopes)",
y = "Baseline Depression Level (Intercepts)")# 加入交互作用
m2 <- lme4::lmer(Score ~ 1 + Week * Endogenous +
(1 + Week | ID),
data = dtaL)library(ggplot2)
library(effects)
interactions::interact_plot(m2,
pred = Week,
modx = Endogenous,
interval = TRUE,
main.title = "Time by Diagnosis Effect")+
labs(x="Time (weeks since baseline)",
y="Mean depression score")+
theme(legend.position=c(.2,.2))anova(m1,
m2,
model.names = c("Time only",
"Time X Dx")) %>%
pander::pander(caption = "LRT: Significance of Diagnosis by Time")refitting model(s) with ML (instead of REML)
| npar | AIC | BIC | logLik | deviance | Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|---|---|---|---|---|
| Time only | 6 | 2231 | 2255 | -1110 | 2219 | NA | NA | NA |
| Time X Dx | 8 | 2231 | 2262 | -1107 | 2215 | 4.108 | 2 | 0.1282 |
It might be better to augment the data with a column variable coding the quadratic trend in number of weeks since baseline.
# 加入平方項,為二次方程式
m3 <- lme4::lmer(Score ~ 1 + Week + I(Week^2) +
(1 + Week + I(Week^2) | ID),
data = dtaL,
control = lmerControl(optimizer = "optimx", # get it to converge
calc.derivs = FALSE,
optCtrl = list(method = "nlminb",
starttests = FALSE,
kkt = FALSE)))# 比較線性跟二次方程式的差別
texreg::knitreg(list(m1,
m3),
custom.model.names = c("Linear Trend",
"QUadratic Trend"),
single.row = TRUE,
stars = numeric(0),
caption = "Linear versus quadratic trend",
caption.above = TRUE,
custom.note = "")| Linear Trend | QUadratic Trend | |
|---|---|---|
| (Intercept) | 23.58 (0.55) | 23.76 (0.56) |
| Week | -2.38 (0.21) | -2.63 (0.48) |
| Week^2 | 0.05 (0.09) | |
| AIC | 2231.92 | 2231.62 |
| BIC | 2255.48 | 2270.89 |
| Log Likelihood | -1109.96 | -1105.81 |
| Num. obs. | 375 | 375 |
| Num. groups: ID | 66 | 66 |
| Var: ID (Intercept) | 12.94 | 10.75 |
| Var: ID Week | 2.13 | 6.86 |
| Cov: ID (Intercept) Week | -1.48 | -1.03 |
| Var: Residual | 12.21 | 10.51 |
| Var: ID I(Week^2) | 0.20 | |
| Cov: ID (Intercept) I(Week^2) | -0.10 | |
| Cov: ID Week I(Week^2) | -0.97 |
# m3更加適配(二次方程式)
# m3的npar、bic較大,aic較小
anova(m1, m3)Data: dtaL
Models:
m1: Score ~ 1 + Week + (1 + Week | ID)
m3: Score ~ 1 + Week + I(Week^2) + (1 + Week + I(Week^2) | ID)
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
m1 6 2231 2255 -1110 2219
m3 10 2228 2267 -1104 2208 11.39 4 0.0225
# m3的固定效果
fixef(m3)(Intercept) Week I(Week^2)
23.7607641 -2.6332347 0.0516461
# m3的相關係數
coef(m3)$ID |> head() (Intercept) Week I(Week^2)
101 25.1998 -5.306775 0.153508
103 27.5675 -3.485660 0.128336
104 26.0138 -3.088029 -0.179923
105 20.9825 -2.936237 0.162536
106 23.6232 -0.721623 -0.145820
107 22.6693 -1.943059 -0.187268
# subject 115
fun_115 <- function(Week){
coef(m3)$ID["115", "(Intercept)"] +
coef(m3)$ID["115", "Week"] * Week +
coef(m3)$ID["115", "I(Week^2)"] * Week^2
}# subject 610
fun_610 <- function(Week){
coef(m3)$ID["610", "(Intercept)"] +
coef(m3)$ID["610", "Week"] * Week +
coef(m3)$ID["610", "I(Week^2)"] * Week^2
}# 繪圖表示115、610的xy曲線關係
# 負相關
dtaL %>%
dplyr::mutate(pred_fixed = predict(m3, re.form = NA)) %>% # fixed effects only
dplyr::mutate(pred_wrand = predict(m3)) %>% # fixed and random effects together
ggplot(aes(x = Week,
y = Score,
group = ID)) +
stat_function(fun = fun_115) + # add cure for ID = 115
stat_function(fun = fun_610) + # add cure for ID = 610
geom_line(aes(y = pred_fixed),
color = "blue",
size = 1.25) +
labs(x = "Weeks Since Baseline",
y = "Hamilton Depression Scores",
subtitle = "Marginal Mean show in thicker blue\nBLUPs for two of the participant in thinner black")+
theme_minimal()+
theme(legend.position = c(0, 0),
legend.justification = c(-0.1, -0.1),
legend.background = element_rect(color = "black"),
legend.key.width = unit(1.5, "cm")) dtaL %>%
dplyr::mutate(pred_fixed = predict(m3, re.form = NA)) %>% # fixed effects only
dplyr::mutate(pred_wrand = predict(m3)) %>% # fixed and random effects together
ggplot(aes(x = Week,
y = Score,
group = ID)) +
geom_line(aes(y = pred_wrand,
color = "BLUP",
size = "BLUP",
linetype = "BLUP")) +
geom_line(aes(y = pred_fixed,
color = "Marginal",
size = "Marginal",
linetype = "Marginal")) +
scale_color_manual(name = "Type of Prediction",
values = c("BLUP" = "gray50",
"Marginal" = "blue")) +
scale_size_manual(name = "Type of Prediction",
values = c("BLUP" = .5,
"Marginal" = 1.25)) +
scale_linetype_manual(name = "Type of Prediction",
values = c("BLUP" = "longdash",
"Marginal" = "solid")) +
labs(x = "Weeks Since Baseline",
y = "Hamilton Depression Scores")+
theme_minimal()+
theme(legend.position = c(0, 0),
legend.justification = c(-0.1, -0.1),
legend.background = element_rect(color = "black"),
legend.key.width = unit(1.5, "cm"))Hedeker, D. (2004). An introduction to growth modeling. In D. Kaplan (Ed.), Quantitative Methodology for the Social Sciences. Thousand Oaks CA: Sage Publications. pdf
Reisby, N., Gram, L.F., Bech, P. et al. (1977). Imipramine: Clinical effects and pharmacokinetic variability. Psychopharmacology, 54, 263-272.