Download the classification output data set (attached in Blackboard to the assignment).
url <- "https://raw.githubusercontent.com/petferns/DATA621/main/classification-output-data.csv"
data <- read.csv(url)
head(data)## pregnant glucose diastolic skinfold insulin bmi pedigree age class
## 1 7 124 70 33 215 25.5 0.161 37 0
## 2 2 122 76 27 200 35.9 0.483 26 0
## 3 3 107 62 13 48 22.9 0.678 23 1
## 4 1 91 64 24 0 29.2 0.192 21 0
## 5 4 83 86 19 0 29.3 0.317 34 0
## 6 1 100 74 12 46 19.5 0.149 28 0
## scored.class scored.probability
## 1 0 0.32845226
## 2 0 0.27319044
## 3 0 0.10966039
## 4 0 0.05599835
## 5 0 0.10049072
## 6 0 0.05515460
The data set has three key columns we will use: class: the actual class for the observation scored.class: the predicted class for the observation (based on a threshold of 0.5) scored.probability: the predicted probability of success for the observation Use the table() function to get the raw confusion matrix for this scored dataset. Make sure you understand the output. In particular, do the rows represent the actual or predicted class? The columns?
The rows represent actual class and the columns represent predicted class
data %>%
select(scored.class, class) %>%
table()## class
## scored.class 0 1
## 0 119 30
## 1 5 27
Write a function that takes the data set as a dataframe, with actual and predicted classifications identified, and returns the accuracy of the predictions.
\(π΄πππ’ππππ¦ = \frac{ππ + ππ}{ππ + πΉπ + ππ + πΉN}\)
prediction_accuracy <- function(x){
TP <- sum(x$class == 1 & x$scored.class == 1)
TN <- sum(x$class == 0 & x$scored.class == 0)
FP <- sum(x$class == 0 & x$scored.class == 1)
FN <- sum(x$class == 1 & x$scored.class == 0)
round((TP + TN)/(TP+FP+TN+FN), 3)
}
prediction_accuracy(data)## [1] 0.807
Write a function that takes the data set as a dataframe, with actual and predicted classifications identified, and returns the classification error rate of the predictions
\(Classification error rate = \frac{πΉπ + πΉπ} {ππ + πΉπ + ππ + πΉN}\) Verify that you get an accuracy and an error rate that sums to one.
error_rate <- function(x){
TP <- sum(x$class == 1 & x$scored.class == 1)
TN <- sum(x$class == 0 & x$scored.class == 0)
FP <- sum(x$class == 0 & x$scored.class == 1)
FN <- sum(x$class == 1 & x$scored.class == 0)
round((FP + FN)/(TP + FP + TN + FN),3)
}prediction_accuracy(data) + error_rate(data)## [1] 1
Write a function that takes the data set as a dataframe, with actual and predicted classifications identified, and returns the precision of the predictions.
\(ππππππ πππ = \frac{ππ} {ππ + πΉP}\)
precision <- function(x){
TP <- sum(x$class == 1 & x$scored.class == 1)
FP <- sum(x$class == 0 & x$scored.class == 1)
round(TP/(TP+FP),3)
}
precision(data)## [1] 0.844
Write a function that takes the data set as a dataframe, with actual and predicted classifications identified, and returns the sensitivity of the predictions. Sensitivity is also known as recall.
\(ππππ ππ‘ππ£ππ‘π¦ = \frac{ππ} {ππ + πΉN}\)
sensitivity <- function(x){
TP <- sum(x$class == 1 & x$scored.class == 1)
FN <- sum(x$class == 1 & x$scored.class == 0)
round(TP/(TP+FN),3)
}
sensitivity(data)## [1] 0.474
Write a function that takes the data set as a dataframe, with actual and predicted classifications identified, and returns the specificity of the predictions.
\(ππππππππππ‘π¦ = \frac{ππ} {ππ + πΉP}\)
specificity <- function(x){
TN <- sum(x$class == 0 & x$scored.class == 0)
FP <- sum(x$class == 0 & x$scored.class == 1)
round(TN/(TN+FP),3)
}
specificity(data)## [1] 0.96
Write a function that takes the data set as a dataframe, with actual and predicted classifications identified, and returns the F1 score of the predictions
\(πΉ1 πππππ = \frac{2 Γ ππππππ πππ Γ ππππ ππ‘ππ£ππ‘π¦} {ππππππ πππ + ππππ ππ‘ππ£ππ‘y}\)
f1_score <- function(x){
round((2*precision(x)*sensitivity(x))/(precision(x)+sensitivity(x)),3)
}
f1_score(data)## [1] 0.607
Before we move on, letβs consider a question that was asked: What are the bounds on the F1 score? Show that the F1 score will always be between 0 and 1. (Hint: If 0 < π < 1 and 0 < π < 1 then ππ < π.)
As the Precision and Sensitivity used to calculate the F1 score are bounded between 0 and 1 the F1 score will always be between 0 and 1.
Write a function that generates an ROC curve from a data set with a true classification column (class in our example) and a probability column (scored.probability in our example). Your function should return a list that includes the plot of the ROC curve and a vector that contains the calculated area under the curve (AUC). Note that I recommend using a sequence of thresholds ranging from 0 to 1 at 0.01 intervals.
ROC_curve <- function(x, y){
x <- x[order(y, decreasing = TRUE)]
FPR <- cumsum(!x) / sum(!x)
TPR <- cumsum(x) / sum(x)
xy <- data.frame(TPR, FPR, x)
FPR_df <- c(diff(xy$FPR), 0)
TPR_df <- c(diff(xy$TPR), 0)
AUC <- round(sum(xy$TPR * FPR_df) + sum(TPR_df * FPR_df)/2, 4)
plot(xy$FPR, xy$TPR, type = "l",
main = "ROC Curve",
xlab = "False Postivies",
ylab = "True Postivies")
abline(a = 0, b = 1)
legend(.6, .4, AUC, title = "AUC")
}
ROC_curve(data$class,data$scored.probability)Use your created R functions and the provided classification output data set to produce all of the classification metrics discussed above.
metrics <- c(prediction_accuracy(data), error_rate(data), precision(data), sensitivity(data), specificity(data), f1_score(data))
names(metrics) <- c("Accuracy", "Classification Error Rate", "Precision", "Sensitivity", "Specificity", "F1-Score")
kable(metrics, col.names = "Classification Metrics")| Classification Metrics | |
|---|---|
| Accuracy | 0.807 |
| Classification Error Rate | 0.193 |
| Precision | 0.844 |
| Sensitivity | 0.474 |
| Specificity | 0.960 |
| F1-Score | 0.607 |
Investigate the caret package. In particular, consider the functions confusionMatrix, sensitivity, and specificity. Apply the functions to the data set. How do the results compare with your own functions?
The results from caret package and my own function match
set_df <- data %>%
select(scored.class, class) %>%
mutate(scored.class = as.factor(scored.class),
class = as.factor(class))
cMat <- confusionMatrix(set_df$scored.class, set_df$class, positive = "1")
caret_package <- c(cMat$overall["Accuracy"], cMat$byClass["Sensitivity"], cMat$byClass["Specificity"])
own_function <- c(prediction_accuracy(data), sensitivity(data), specificity(data))
res <- cbind(caret_package, own_function)
kable(res)| caret_package | own_function | |
|---|---|---|
| Accuracy | 0.8066298 | 0.807 |
| Sensitivity | 0.4736842 | 0.474 |
| Specificity | 0.9596774 | 0.960 |
Investigate the pROC package. Use it to generate an ROC curve for the data set. How do the results compare with your own functions?
The results from pROC package and my own function match
par(mfrow = c(1, 2))
plot(roc(data$class, data$scored.probability), print.auc = TRUE)## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
ROC_curve(data$class,data$scored.probability)