# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NFLX","AAPL", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol)%>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl%>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "TSLA"
weights <- c(.33,.33,.33)
weights
## [1] 0.33 0.33 0.33
w_tble <- tibble(symbols, weights)
w_tble
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.33
## 2 NFLX 0.33
## 3 TSLA 0.33
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tble,
rebalance_on ="months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.173
## 2 2013-02-28 0.00981
## 3 2013-03-28 0.0308
## 4 2013-04-30 0.161
## 5 2013-05-31 0.218
## 6 2013-06-28 -0.0335
## 7 2013-07-31 0.166
## 8 2013-08-30 0.152
## 9 2013-09-30 0.0655
## 10 2013-10-31 -0.0184
## # … with 50 more rows
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "green", binwidth = .009) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format())+
labs(x = "returns",
y = "distribution",
title ="Portfolio Histogram & Density")
What return should you expect from the portfolio in a typical quarter?