# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 100 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AGG 2013-03-28 0.000645
## 2 AGG 2013-06-28 -0.0264
## 3 AGG 2013-09-30 0.00553
## 4 AGG 2013-12-31 0.000199
## 5 AGG 2014-03-31 0.0176
## 6 AGG 2014-06-30 0.0193
## 7 AGG 2014-09-30 0.00275
## 8 AGG 2014-12-31 0.0186
## 9 AGG 2015-03-31 0.0151
## 10 AGG 2015-06-30 -0.0184
## # … with 90 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.2, 0.25, 0.5, 0.2, 0.7)
weights
## [1] 0.20 0.25 0.50 0.20 0.70
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.2
## 2 EEM 0.25
## 3 EFA 0.5
## 4 IJS 0.2
## 5 SPY 0.7
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.101
## 2 2013-06-28 -0.00411
## 3 2013-09-30 0.123
## 4 2013-12-31 0.126
## 5 2014-03-31 0.0159
## 6 2014-06-30 0.0791
## 7 2014-09-30 -0.0474
## 8 2014-12-31 0.0251
## 9 2015-03-31 0.0436
## 10 2015-06-30 -0.00191
## 11 2015-09-30 -0.165
## 12 2015-12-31 0.0694
## 13 2016-03-31 0.0273
## 14 2016-06-30 0.0292
## 15 2016-09-30 0.0909
## 16 2016-12-30 0.0237
## 17 2017-03-31 0.108
## 18 2017-06-30 0.0710
## 19 2017-09-29 0.0885
## 20 2017-12-29 0.0893
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales :: percent_format()) +
labs(x = "returns",
y = "dsitribution",
title = "Portfolio Histogram & Density")
What return should you expect from the portfolio in a typical
quarter?
It would be safe to assume about a 1% return per quater