Regresion logistica para muestra unificada

El diseño muestral es el que se logró armar considerando los diseños de cada país Finalmente se trabaja con un diseño equivalente a 2 etapas, primera donde las psu son las escuelas, el pais es la variable de estratficacióny se usan como pesos muestrales los que se consideraron en Uruguay (ver diseño de Uruguay y para POA se creó un nuevo vector de peso usando como variables de ajuste distribucion por sexo y por tipo de escuela)

names(disenio_urubra$variables) [1] “id” “pais” “ficha”
[4] “eta” “tipoesc” “sexoinv”
[7] “weight” “weight.rec” “numesc”
[10] “numer_esc” “idade” “socioecon4cat”
[13] “socioecon3cat” “escolmae” “escolmae13cat”
[16] “escolmaerecat23cat” “freqescov” “freqescovacat”
[19] “usofio” “freqfio” “usocreme”
[22] “idadcreme” “visidentcatonde” “visiquando”
[25] “fluorprof” “idadefluor” “isg.”
[28] “isg45” “isg20” “cposoms”
[31] “cpodoms” “prevoms” “cposbere”
[34] “cpodbere” “prevbere” “cposicdas”
[37] “cpodicdas” “previcdas”


#
# load('~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU.RData')
load("C:/Users/usuario/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU.RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
library(car)
## Loading required package: MASS
## Loading required package: nnet
# 10 de octubre 2013

modelo0.bin <- svyglm(prevoms ~ pais, disenio_urubra, family = quasibinomial())
summary(modelo0.bin)
## 
## Call:
## svyglm(formula = prevoms ~ pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.2185     0.0952    2.30    0.024 *
## paisUru       0.2484     0.1420    1.75    0.084 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo0.bin)
##                2.5 % 97.5 %
## (Intercept)  0.03195 0.4050
## paisUru     -0.02999 0.5268
exp(modelo0.bin$coefficients)
## (Intercept)     paisUru 
##       1.244       1.282


modelo1.bin <- svyglm(prevoms ~ sexoinv + pais, disenio_urubra, family = quasibinomial())
summary(modelo1.bin)
## 
## Call:
## svyglm(formula = prevoms ~ sexoinv + pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.1745     0.1130    1.54    0.127  
## sexoinv2-F    0.0897     0.1277    0.70    0.485  
## paisUru       0.2494     0.1422    1.75    0.083 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo1.bin)
##                2.5 % 97.5 %
## (Intercept) -0.04707 0.3960
## sexoinv2-F  -0.16064 0.3400
## paisUru     -0.02925 0.5281
exp(modelo1.bin$coefficients)
## (Intercept)  sexoinv2-F     paisUru 
##       1.191       1.094       1.283

modelo2.bin <- svyglm(prevoms ~ socioecon4cat + pais, disenio_urubra, family = quasibinomial())
summary(modelo2.bin)
## 
## Call:
## svyglm(formula = prevoms ~ socioecon4cat + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 -0.683      0.185   -3.70  0.00041 ***
## socioecon4cat2-medio-alto    0.634      0.222    2.86  0.00549 ** 
## socioecon4cat3-medio-bajo    1.109      0.192    5.78  1.5e-07 ***
## socioecon4cat4-bajo          1.454      0.228    6.38  1.2e-08 ***
## paisUru                      0.395      0.124    3.18  0.00209 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo2.bin)
##                             2.5 %  97.5 %
## (Intercept)               -1.0453 -0.3211
## socioecon4cat2-medio-alto  0.1990  1.0681
## socioecon4cat3-medio-bajo  0.7333  1.4855
## socioecon4cat4-bajo        1.0075  1.9005
## paisUru                    0.1520  0.6388
exp(modelo2.bin$coefficients)
##               (Intercept) socioecon4cat2-medio-alto 
##                     0.505                     1.884 
## socioecon4cat3-medio-bajo       socioecon4cat4-bajo 
##                     3.033                     4.280 
##                   paisUru 
##                     1.485

modelo3.bin <- svyglm(prevoms ~ socioecon3cat + pais, disenio_urubra, family = quasibinomial())
summary(modelo3.bin)
## 
## Call:
## svyglm(formula = prevoms ~ socioecon3cat + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            -0.565      0.156   -3.62  0.00052 ***
## socioecon3cat2-medio    0.828      0.156    5.30  1.0e-06 ***
## socioecon3cat3-bajo     1.332      0.193    6.90  1.2e-09 ***
## paisUru                 0.402      0.129    3.11  0.00258 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo3.bin)
##                        2.5 %  97.5 %
## (Intercept)          -0.8716 -0.2593
## socioecon3cat2-medio  0.5218  1.1340
## socioecon3cat3-bajo   0.9536  1.7103
## paisUru               0.1489  0.6545
exp(modelo3.bin$coefficients)
##          (Intercept) socioecon3cat2-medio  socioecon3cat3-bajo 
##               0.5681               2.2885               3.7884 
##              paisUru 
##               1.4944

modelo4.bin <- svyglm(prevoms ~ escolmaerecat23cat + pais, disenio_urubra, family = quasibinomial())
summary(modelo4.bin)
## 
## Call:
## svyglm(formula = prevoms ~ escolmaerecat23cat + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             -0.526      0.144   -3.65  0.00047
## escolmaerecat23cat2-high school          0.560      0.153    3.65  0.00047
## escolmaerecat23cat3-elementary school    1.140      0.167    6.83  1.7e-09
## paisUru                                  0.466      0.119    3.92  0.00019
##                                          
## (Intercept)                           ***
## escolmaerecat23cat2-high school       ***
## escolmaerecat23cat3-elementary school ***
## paisUru                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo4.bin)
##                                         2.5 %  97.5 %
## (Intercept)                           -0.8085 -0.2436
## escolmaerecat23cat2-high school        0.2595  0.8607
## escolmaerecat23cat3-elementary school  0.8128  1.4670
## paisUru                                0.2331  0.6983
exp(modelo4.bin$coefficients)
##                           (Intercept) 
##                                0.5909 
##       escolmaerecat23cat2-high school 
##                                1.7508 
## escolmaerecat23cat3-elementary school 
##                                3.1264 
##                               paisUru 
##                                1.5932

modelo5.bin <- svyglm(prevoms ~ escolmae13cat + pais, disenio_urubra, family = quasibinomial())
summary(modelo5.bin)
## 
## Call:
## svyglm(formula = prevoms ~ escolmae13cat + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        -0.686      0.185   -3.70   0.0004 ***
## escolmae13cat2-high school          0.596      0.238    2.50   0.0146 *  
## escolmae13cat3-Elementary School    1.233      0.179    6.88  1.3e-09 ***
## paisUru                             0.306      0.121    2.52   0.0137 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.003)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo5.bin)
##                                     2.5 %  97.5 %
## (Intercept)                      -1.04872 -0.3226
## escolmae13cat2-high school        0.12852  1.0632
## escolmae13cat3-Elementary School  0.88200  1.5843
## paisUru                           0.06835  0.5446
exp(modelo5.bin$coefficients)
##                      (Intercept)       escolmae13cat2-high school 
##                           0.5038                           1.8146 
## escolmae13cat3-Elementary School                          paisUru 
##                           3.4320                           1.3586


modelo6.bin <- svyglm(prevoms ~ freqescovacat + pais, disenio_urubra, family = quasibinomial())
summary(modelo6.bin)
## 
## Call:
## svyglm(formula = prevoms ~ freqescovacat + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    0.607      0.126    4.81  7.1e-06 ***
## freqescovacat2-veces al día   -0.396      0.127   -3.11  0.00263 ** 
## freqescovacat3-veces al día   -0.615      0.152   -4.06  0.00012 ***
## paisUru                        0.297      0.144    2.06  0.04259 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo6.bin)
##                                2.5 %  97.5 %
## (Intercept)                  0.35964  0.8537
## freqescovacat2-veces al día -0.64513 -0.1461
## freqescovacat3-veces al día -0.91192 -0.3180
## paisUru                      0.01463  0.5798
exp(modelo6.bin$coefficients)
##                 (Intercept) freqescovacat2-veces al día 
##                      1.8343                      0.6733 
## freqescovacat3-veces al día                     paisUru 
##                      0.5407                      1.3461

modelo7.bin <- svyglm(prevoms ~ usocreme + pais, disenio_urubra, family = quasibinomial())
summary(modelo7.bin)
## 
## Call:
## svyglm(formula = prevoms ~ usocreme + pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    0.2086     0.0941    2.22    0.030 *
## usocreme2-No   0.5833     0.3843    1.52    0.133  
## paisUru        0.2455     0.1421    1.73    0.088 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo7.bin)
##                 2.5 % 97.5 %
## (Intercept)   0.02415 0.3931
## usocreme2-No -0.16986 1.3365
## paisUru      -0.03304 0.5241
exp(modelo7.bin$coefficients)
##  (Intercept) usocreme2-No      paisUru 
##        1.232        1.792        1.278

modelo8.bin <- svyglm(prevoms ~ visidentcatonde + pais, disenio_urubra, family = quasibinomial())
summary(modelo8.bin)
## 
## Call:
## svyglm(formula = prevoms ~ visidentcatonde + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                             -0.1521     0.0884   -1.72
## visidentcatonde2-Publico                 0.8539     0.1107    7.71
## visidentcatonde3-Nunca fue al dentista   0.5815     0.1358    4.28
## paisUru                                  0.3175     0.1245    2.55
##                                        Pr(>|t|)    
## (Intercept)                               0.089 .  
## visidentcatonde2-Publico                3.4e-11 ***
## visidentcatonde3-Nunca fue al dentista  5.2e-05 ***
## paisUru                                   0.013 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9946)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo8.bin)
##                                           2.5 %  97.5 %
## (Intercept)                            -0.32530 0.02119
## visidentcatonde2-Publico                0.63691 1.07087
## visidentcatonde3-Nunca fue al dentista  0.31525 0.84773
## paisUru                                 0.07354 0.56153
exp(modelo8.bin$coefficients)
##                            (Intercept) 
##                                 0.8589 
##               visidentcatonde2-Publico 
##                                 2.3488 
## visidentcatonde3-Nunca fue al dentista 
##                                 1.7887 
##                                paisUru 
##                                 1.3737

modelo9.bin <- svyglm(prevoms ~ visiquando + pais, disenio_urubra, family = quasibinomial())
summary(modelo9.bin)
## 
## Call:
## svyglm(formula = prevoms ~ visiquando + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                  0.1388     0.1060    1.31    0.194  
## visiquando2- más de 2 años   0.0584     0.1578    0.37    0.713  
## visiquando3- nunca fue       0.3275     0.1306    2.51    0.014 *
## paisUru                      0.2713     0.1454    1.87    0.066 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9979)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo9.bin)
##                               2.5 % 97.5 %
## (Intercept)                -0.06896 0.3466
## visiquando2- más de 2 años -0.25092 0.3676
## visiquando3- nunca fue      0.07144 0.5835
## paisUru                    -0.01360 0.5562
exp(modelo9.bin$coefficients)
##                (Intercept) visiquando2- más de 2 años 
##                      1.149                      1.060 
##     visiquando3- nunca fue                    paisUru 
##                      1.387                      1.312

modelo10.bin <- svyglm(prevoms ~ fluorprof + pais, disenio_urubra, family = quasibinomial())
summary(modelo10.bin)
## 
## Call:
## svyglm(formula = prevoms ~ fluorprof + pais, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     0.1847     0.1020    1.81    0.074 .
## fluorprof2-No   0.0965     0.1234    0.78    0.436  
## paisUru         0.2179     0.1445    1.51    0.136  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9991)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo10.bin)
##                  2.5 % 97.5 %
## (Intercept)   -0.01522 0.3846
## fluorprof2-No -0.14527 0.3383
## paisUru       -0.06529 0.5012
exp(modelo10.bin$coefficients)
##   (Intercept) fluorprof2-No       paisUru 
##         1.203         1.101         1.244

modelo11.bin <- svyglm(prevoms ~ isg20 + pais, disenio_urubra, family = quasibinomial())
summary(modelo11.bin)
## 
## Call:
## svyglm(formula = prevoms ~ isg20 + pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.0299     0.1780   -0.17   0.8670    
## isg202- 20 a 60   0.0505     0.1689    0.30   0.7659    
## isg203- >=60      0.7062     0.1643    4.30  4.9e-05 ***
## paisUru           0.4274     0.1382    3.09   0.0028 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo11.bin)
##                   2.5 % 97.5 %
## (Intercept)     -0.3789 0.3190
## isg202- 20 a 60 -0.2806 0.3816
## isg203- >=60     0.3843 1.0282
## paisUru          0.1564 0.6983
exp(modelo11.bin$coefficients)
##     (Intercept) isg202- 20 a 60    isg203- >=60         paisUru 
##          0.9705          1.0518          2.0263          1.5332

modelo12.bin <- svyglm(prevoms ~ isg45 + pais, disenio_urubra, family = quasibinomial())
summary(modelo12.bin)
## 
## Call:
## svyglm(formula = prevoms ~ isg45 + pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.142      0.117   -1.21   0.2285    
## isg452- 45 a 60    0.338      0.131    2.59   0.0114 *  
## isg453- >=60       0.801      0.139    5.75  1.7e-07 ***
## paisUru            0.514      0.141    3.64   0.0005 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo12.bin)
##                    2.5 %  97.5 %
## (Intercept)     -0.37106 0.08724
## isg452- 45 a 60  0.08246 0.59422
## isg453- >=60     0.52774 1.07395
## paisUru          0.23667 0.79051
exp(modelo12.bin$coefficients)
##     (Intercept) isg452- 45 a 60    isg453- >=60         paisUru 
##          0.8677          1.4026          2.2274          1.6713