knitr::opts_knit$set(root.dir = "/research/labs/neurology/fryer/m214960/aducanumab/scripts/R")
# load libraries
library(cowplot) # plot_grid()
library(dplyr) # left_join()
library(ggplot2) # ggplot()
library(gridExtra) # grid.arrange()
library(harmony) # RunHarmony()
library(parallel) # detectCores()
library(plotly) # plot_ly()
library(Seurat) # Read10X_h5()
library(ShinyCell) # makeShinyApp()
library(stringr) # str_match()
# variables
sample_order <- c("IgG.F.939A","IgG.F.939B","IgG.F.959B",
"IgG.M.823A","IgG.M.851A",
"Adu.F.736B","Adu.F.738A","Adu.F.738B",
"Adu.M.705A","Adu.M.734A")
group_order <- c("IgG","Adu")
sex_order <- c("Male","Female")
sample_colors <- c("gray","red","orange","yellow","green","forestgreen","cyan","blue","purple","pink")
group_colors <- c("gray","cornflowerblue")
sex_colors <- c("darkgray","purple")
# thresholds
nCount.min <- 200
nCount.max <- 10000
nFeature.min <- 100
complexity.cutoff <- 0.8
mt.cutoff <- 20
ribo.cutoff <- 20
hb.cutoff <- 3
ttr.cutoff <- 1
# set seed
set.seed(8)
# work in parallel
options(mc.cores = detectCores() - 1)
These functions with help simultaneously save plots as a png and pdf.
saveToPDF <- function(...) {
d = dev.copy(pdf,...)
dev.off(d)
}
saveToPNG <- function(...) {
d = dev.copy(png,...)
dev.off(d)
}
prefix <- "../../cellbender/"
suffix <- "_fpr_0.05_filtered.h5"
if (file.exists("../../rObjects/mouse_merged_h5.rds")) {
mouse <- readRDS("../../rObjects/mouse_merged_h5.rds")
} else {
# individual sample objects
IgG.F.939A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"939A_IgG_Female",suffix)))
IgG.F.939B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"939B_IgG_Female",suffix)))
IgG.F.959B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"959B_IgG_Female",suffix)))
IgG.M.823A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"823A_IgG_Male",suffix)))
IgG.M.851A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"851A_IgG_Male",suffix)))
Adu.F.736B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"736B_Adu_Female",suffix)))
Adu.F.738A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"738A_Adu_Female",suffix)))
Adu.F.738B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"738B_Adu_Female",suffix)))
Adu.M.705A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"705A_Adu_Male",suffix)))
Adu.M.734A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"734A_Adu_Male",suffix)))
# merge objects
mouse <- merge(x = IgG.F.939A,
y = c(IgG.F.939B, IgG.F.959B, IgG.M.823A, IgG.M.851A,
Adu.F.736B, Adu.F.738A, Adu.F.738B, Adu.M.705A, Adu.M.734A),
add.cell.ids = c("IgG.F.939A","IgG.F.939B","IgG.F.959B","IgG.M.823A",
"IgG.M.851A","Adu.F.736B","Adu.F.738A","Adu.F.738B",
"Adu.M.705A","Adu.M.734A"),
project = "Aducanumab Mice scRNAseq")
# cleanup and save
remove(IgG.F.939A, IgG.F.939B, IgG.F.959B, IgG.M.823A, IgG.M.851A,
Adu.F.736B, Adu.F.738A, Adu.F.738B, Adu.M.705A, Adu.M.734A)
saveRDS(mouse, "../../rObjects/mouse_merged_h5.rds")
}
# preview
mouse
## An object of class Seurat
## 32285 features across 70028 samples within 1 assay
## Active assay: RNA (32285 features, 0 variable features)
# read in annotation file, GENCODE GRCm38 version M23 (Ensembl 98)
if (file.exists("../../rObjects/annotation.rds")) {
genes <- readRDS("../../rObjects/annotation.rds")
} else {
gtf.file <- "../../refs/mouse_genes.gtf"
genes <- rtracklayer::import(gtf.file)
genes <- as.data.frame(genes)
genes <- genes[genes$type == "gene",]
saveRDS(genes, "../../rObjects/annotation.rds")
}
nCount_RNA = total number of transcripts (UMIs) in a single cell nFeature_RNA = number of unique transcripts (features)
# create sample column
barcodes <- colnames(mouse)
sample <- str_match(barcodes, "(.+)_[ACGT]+-(\\d+)")[,2]
mouse$sample <- factor(sample, levels = sample_order)
Idents(mouse) <- mouse$sample
# sex column
sex <- str_match(mouse$sample, "[IgGAdu]+\\.([FM]).[0-9]+[AB]")[,2]
sex <- gsub("F","Female",sex)
sex <- gsub("M","Male",sex)
mouse$sex <- factor(sex, levels = sex_order)
# group column
group <- str_match(mouse$sample, "([IgGAdu]+)\\.[FM].[0-9]+[AB]")[,2]
mouse$group <- factor(group, levels = group_order)
# cell.complexity
mouse$cell.complexity <- log10(mouse$nFeature_RNA) / log10(mouse$nCount_RNA)
# percent.mt
mt.genes <- genes[genes$seqnames == "chrM",13]
mouse$percent.mt <- PercentageFeatureSet(mouse, features = mt.genes)
mt.genes
## [1] "mt-Nd1" "mt-Nd2" "mt-Co1" "mt-Co2" "mt-Atp8" "mt-Atp6" "mt-Co3"
## [8] "mt-Nd3" "mt-Nd4l" "mt-Nd4" "mt-Nd5" "mt-Nd6" "mt-Cytb"
# percent.ribo
# ribosomal proteins begin with 'Rps' or 'Rpl' in this annotation file
# mitochondrial ribosomes start with 'Mrps' or 'Mrpl'
gene.names <- genes$gene_name
ribo <- gene.names[grep("^Rp[sl]", gene.names)]
mt.ribo <- gene.names[grep("^Mrp[sl]", gene.names)]
ribo.combined <- c(mt.ribo,ribo)
mouse$percent.ribo.protein <- PercentageFeatureSet(mouse, features = ribo.combined)
ribo.combined
## [1] "Mrpl15" "Mrpl30" "Mrps9" "Mrpl44" "Mrps14"
## [6] "Mrpl41" "Mrps2" "Mrps5" "Mrps26" "Mrps28"
## [11] "Mrpl47" "Mrpl24" "Mrpl9" "Mrps21" "Mrpl50"
## [16] "Mrpl37" "Mrps15" "Mrpl20" "Mrpl33" "Mrpl1"
## [21] "Mrps18c" "Mrps17" "Mrps33" "Mrpl35" "Mrpl19"
## [26] "Mrpl53" "Mrps25" "Mrpl51" "Mrps35" "Mrps12"
## [31] "Mrpl46" "Mrps11" "Mrpl48" "Mrpl17" "Mrpl23"
## [36] "Mrps31" "Mrpl34" "Mrpl4" "Mrps22" "Mrpl3"
## [41] "Mrpl54" "Mrpl42" "Mrps24" "Mrpl22" "Mrpl55"
## [46] "Mrps23" "Mrpl27" "Mrpl10" "Mrpl45" "Mrpl58"
## [51] "Mrps7" "Mrpl38" "Mrpl12" "Mrpl32" "Mrpl36"
## [56] "Mrps27" "Mrps36" "Mrps30" "Mrps16" "Mrpl52"
## [61] "Mrpl57" "Mrpl13" "Mrpl40" "Mrpl39" "Mrps6"
## [66] "Mrpl18" "Mrps34" "Mrpl28" "Mrps18b" "Mrpl14"
## [71] "Mrps18a" "Mrpl2" "Mrps10" "Mrpl21" "Mrpl11"
## [76] "Mrpl49" "Mrpl16" "Mrpl43" "Rpl7" "Rpl31"
## [81] "Rpl37a" "Rps6kc1" "Rpl7a" "Rpl12" "Rpl35"
## [86] "Rps21" "Rpl22l1" "Rps3a1" "Rps27" "Rpl34"
## [91] "Rps20" "Rps6" "Rps8" "Rps6ka1" "Rpl11"
## [96] "Rpl22" "Rpl9" "Rpl5" "Rplp0" "Rpl6"
## [101] "Rpl21" "Rpl32" "Rps9" "Rpl28" "Rps5"
## [106] "Rps19" "Rps16" "Rps11" "Rpl13a" "Rpl18"
## [111] "Rps17" "Rps3" "Rpl27a" "Rps13" "Rps15a"
## [116] "Rplp2" "Rpl18a" "Rpl13" "Rps25" "Rpl10-ps3"
## [121] "Rplp1" "Rpl4" "Rps27l" "Rpl29" "Rps27rt"
## [126] "Rpsa" "Rpl14" "Rps12" "Rps15" "Rpl41"
## [131] "Rps26" "Rps27a" "Rpl26" "Rpl23a" "Rpl9-ps1"
## [136] "Rps6kb1" "Rpl23" "Rpl19" "Rpl27" "Rpl38"
## [141] "Rps7" "Rpl10l" "Rps29" "Rpl36al" "Rps6kl1"
## [146] "Rps6ka5" "Rps23" "Rpl15" "Rps24" "Rpl36a-ps1"
## [151] "Rpl37" "Rpl30" "Rpl8" "Rpl3" "Rps19bp1"
## [156] "Rpl39l" "Rpl35a" "Rpl24" "Rps6ka2" "Rps2"
## [161] "Rpl3l" "Rps10" "Rpl10a" "Rps28" "Rps18"
## [166] "Rpl7l1" "Rpl36" "Rpl36-ps4" "Rps14" "Rpl17"
## [171] "Rps6kb2" "Rps6ka4" "Rpl9-ps6" "Rpl39" "Rpl10"
## [176] "Rps4x" "Rps6ka6" "Rpl36a" "Rps6ka3"
# percent.hb
# percent.hb - hemoglobin proteins begin with 'Hbb' or 'Hba' for mouse
hb.genes <- gene.names[grep("^Hb[ba]-", gene.names)]
mouse$percent.hb <- PercentageFeatureSet(mouse, features = hb.genes)
hb.genes
## [1] "Hbb-bt" "Hbb-bs" "Hbb-bh2" "Hbb-bh1" "Hbb-y" "Hba-x" "Hba-a1"
## [8] "Hba-a2"
# percent Ttr
mouse$percent.ttr <- PercentageFeatureSet(mouse, features = "Ttr")
# Visualize the number of cell counts per sample
data <- as.data.frame(table(mouse$sample))
colnames(data) <- c("sample","frequency")
ncells1 <- ggplot(data, aes(x = sample, y = frequency, fill = sample)) +
geom_col() +
theme_classic() +
geom_text(aes(label = frequency),
position=position_dodge(width=0.9),
vjust=-0.25) +
scale_fill_manual(values = sample_colors) +
scale_y_continuous(breaks = seq(0,20000, by = 2000), limits = c(0,20000)) +
ggtitle("Raw: cells per sample") +
theme(legend.position = "none") +
theme(axis.text.x = element_text(angle = 45, hjust=1))
ncells1
# Visualize nCount_RNA
den1 <- ggplot(mouse@meta.data,
aes(color = sample,
x = nCount_RNA,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
scale_color_manual(values = sample_colors) +
scale_fill_manual(values = sample_colors) +
xlab("nCount_RNA") +
ylab("Density") +
theme(legend.position = "none") +
geom_vline(xintercept = nCount.min) +
geom_vline(xintercept = nCount.max) +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize nFeature_RNA
den2 <- ggplot(mouse@meta.data,
aes(color = sample,
x = nFeature_RNA,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("nFeature_RNA") +
ylab("Density") +
geom_vline(xintercept = nFeature.min) +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize cell complexity
# Quality cells are usually above 0.85
den3 <- ggplot(mouse@meta.data,
aes(color = sample,
x = cell.complexity,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("Cell Complexity (log10(nFeature/nCount))") +
ylab("Density") +
geom_vline(xintercept = complexity.cutoff) +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize percent.mt
den4 <- ggplot(mouse@meta.data,
aes(color = sample,
x = percent.mt,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_continuous(n.breaks = 4) +
geom_vline(xintercept = mt.cutoff) +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("% Mitochondrial Genes") +
ylab("Density") +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize percent.ribo.protein
den5 <- ggplot(mouse@meta.data,
aes(color = sample,
x = percent.ribo.protein,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
geom_vline(xintercept = ribo.cutoff) +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("% Ribosomal Protein Genes") +
ylab("Density") +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize percent.hb
den6 <- ggplot(mouse@meta.data,
aes(color = sample,
x = percent.hb,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
geom_vline(xintercept = hb.cutoff) +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("% Hemoglobin Genes") +
ylab("Density") +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Arrange graphs in grid
plots <- list(den1,den2,den3,den4,den5,den6)
layout <- rbind(c(1,4),c(2,5),c(3,6))
grid <- grid.arrange(grobs = plots, layout_matrix = layout)
# nFeature, nCount, and cell.complexity violins
v1 <- VlnPlot(mouse,
features = c("nFeature_RNA", "nCount_RNA","cell.complexity"),
ncol = 3,
group.by = 'sample',
cols = sample_colors,
pt.size = 0)
v1
# percent violins
v2 <- VlnPlot(mouse,
features = c("percent.mt","percent.ribo.protein","percent.hb","percent.ttr"),
ncol = 4,
group.by = 'sample',
cols = sample_colors,
pt.size = 0)
v2
s1 <- ggplot(
mouse@meta.data,
aes(x = nCount_RNA, y = nFeature_RNA, color = percent.mt)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10() +
theme_classic() +
geom_vline(xintercept = nCount.min) +
geom_hline(yintercept = nFeature.min) +
facet_wrap(~sample) +
scale_colour_gradient(low = "gray90", high = "black", limits =c(0,100))
s1
## `geom_smooth()` using formula 'y ~ x'
s2 <- FeatureScatter(mouse,
feature1 = "nCount_RNA",
feature2 = "percent.mt",
group.by = 'sample',
cols = sample_colors,
shuffle = TRUE)
s2
# filter
mouse.filtered <- subset(mouse,
subset = (nCount_RNA > nCount.min) &
(nCount_RNA < nCount.max) &
(nFeature_RNA > nFeature.min) &
(cell.complexity > complexity.cutoff) &
(percent.mt < mt.cutoff) &
(percent.ribo.protein < ribo.cutoff) &
(percent.hb < hb.cutoff) &
(percent.ttr < ttr.cutoff))
# print cells removed
print(paste0(dim(mouse)[2] - dim(mouse.filtered)[2]," cells removed"))
## [1] "18965 cells removed"
Remove lowly expressed genes. We will keep genes that have at least 1 count in 10 cells.
# filter genes
counts <- GetAssayData(object = mouse.filtered, slot = "counts")
nonzero <- counts > 0 # produces logical
keep <- Matrix::rowSums(nonzero) >= 10 # sum the true/false
counts.filtered <- counts[keep,] # keep certain genes
# overwrite mouse.filtered
mouse.filtered <- CreateSeuratObject(counts.filtered,
meta.data = mouse.filtered@meta.data)
# print features removed
print(paste0(dim(counts)[1] - dim(counts.filtered)[1], " features removed"))
## [1] "11246 features removed"
Multiple passes were made to assess whether mitochondrial, ribosomal, and immunoglobulin genes should be removed. Ultimately, removal of these genes enhanced clustering.
# remove mt.genes
counts <- GetAssayData(object = mouse.filtered, slot = "counts")
keep <- !rownames(counts) %in% mt.genes # false when mt.gene
counts.filtered <- counts[keep,]
# remove ribo.genes
#keep <- !rownames(counts.filtered) %in% ribo.combined
#counts.filtered <- counts.filtered[keep,]
# remove Ig genes + Jchain but keep Igha + Ighd to enahnce clustering
#gene.types <- c("IG_C_gene","IG_C_pseudogene","IG_D","IG_J_gene","IG_LV_gene",
# "IG_V_gene","IG_V_pseudogene")
#keep <- (genes$gene_type) %in% gene.types
#ig.genes <- genes[keep,]
#ig.genes <- c(ig.genes$gene_name, "Jchain")
#ig.genes <- ig.genes[-c(185,192)] # keep Igha and Ighd
#ig.genes
#keep <- !rownames(counts.filtered) %in% ig.genes
#counts.filtered <- counts.filtered[keep,]
# overwrite mouse.filtered
mouse.filtered <- CreateSeuratObject(counts.filtered,
meta.data = mouse.filtered@meta.data)
# print features removed
print(paste0(dim(counts)[1] - dim(counts.filtered)[1], " features removed"))
## [1] "13 features removed"
# cleanup data
remove(mouse,counts,counts.filtered,nonzero)
# Visualize the number of cell counts per sample
data <- as.data.frame(table(mouse.filtered$sample))
colnames(data) <- c("sample","frequency")
ncells2 <- ggplot(data, aes(x = sample, y = frequency, fill = sample)) +
geom_col() +
theme_classic() +
geom_text(aes(label = frequency),
position=position_dodge(width=0.9),
vjust=-0.25) +
scale_fill_manual(values = sample_colors) +
scale_y_continuous(breaks = seq(0,20000, by = 2000), limits = c(0,20000)) +
ggtitle("Filtered: cells per sample") +
theme(legend.position = "none") +
theme(axis.text.x = element_text(angle = 45, hjust=1))
# Arrange graphs in grid
plots <- list(ncells1,ncells2)
layout <- rbind(c(1),c(2))
grid <- grid.arrange(grobs = plots, layout_matrix = layout)
# Visualize nCount_RNA
den1 <- ggplot(mouse.filtered@meta.data,
aes(color = sample,
x = nCount_RNA,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
scale_color_manual(values = sample_colors) +
scale_fill_manual(values = sample_colors) +
xlab("nCount_RNA") +
ylab("Density") +
theme(legend.position = "none") +
geom_vline(xintercept = nCount.min) +
geom_vline(xintercept = nCount.max) +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize nFeature_RNA
den2 <- ggplot(mouse.filtered@meta.data,
aes(color = sample,
x = nFeature_RNA,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("nFeature_RNA") +
ylab("Density") +
geom_vline(xintercept = nFeature.min) +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize cell complexity
# Quality cells are usually above 0.85
den3 <- ggplot(mouse.filtered@meta.data,
aes(color = sample,
x = cell.complexity,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("Cell Complexity (log10(nFeature/nCount))") +
ylab("Density") +
geom_vline(xintercept = complexity.cutoff) +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize percent.mt
den4 <- ggplot(mouse.filtered@meta.data,
aes(color = sample,
x = percent.mt,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_continuous(n.breaks = 4) +
geom_vline(xintercept = mt.cutoff) +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("% Mitochondrial Genes") +
ylab("Density") +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize percent.ribo.protein
den5 <- ggplot(mouse.filtered@meta.data,
aes(color = sample,
x = percent.ribo.protein,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
geom_vline(xintercept = ribo.cutoff) +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("% Ribosomal Protein Genes") +
ylab("Density") +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Visualize percent.hb
den6 <- ggplot(mouse.filtered@meta.data,
aes(color = sample,
x = percent.hb,
fill = sample)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
geom_vline(xintercept = hb.cutoff) +
scale_color_manual(values = sample_colors) +
theme(legend.position = "none") +
scale_fill_manual(values = sample_colors) +
xlab("% Hemoglobin Genes") +
ylab("Density") +
theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))
# Arrange graphs in grid
plots <- list(den1,den2,den3,den4,den5,den6)
layout <- rbind(c(1,4),c(2,5),c(3,6))
grid <- grid.arrange(grobs = plots, layout_matrix = layout)
# nFeature, nCount, and cell.complexity violins
v3 <- VlnPlot(mouse.filtered,
features = c("nFeature_RNA", "nCount_RNA","cell.complexity"),
ncol = 3,
group.by = 'sample',
cols = sample_colors,
pt.size = 0)
v3
# percent violins
v4 <- VlnPlot(mouse.filtered,
features = c("percent.mt","percent.ribo.protein","percent.hb","percent.ttr"),
ncol = 4,
group.by = 'sample',
cols = sample_colors,
pt.size = 0)
v4
s3 <- ggplot(
mouse.filtered@meta.data,
aes(x = nCount_RNA, y = nFeature_RNA, color = percent.mt)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10() +
theme_classic() +
geom_vline(xintercept = nCount.min) +
geom_hline(yintercept = nFeature.min) +
facet_wrap(~sample) +
scale_colour_gradient(low = "gray90", high = "black", limits =c(0,100))
s3
## `geom_smooth()` using formula 'y ~ x'
s4 <- FeatureScatter(mouse.filtered,
feature1 = "nCount_RNA",
feature2 = "percent.mt",
group.by = 'sample',
cols = sample_colors,
shuffle = TRUE)
s4
# Visualize the distribution of genes detected per cell via boxplot
b1 <- ggplot(mouse.filtered@meta.data,
aes(x = sample,
y = log10(nFeature_RNA),
fill=sample)) +
geom_boxplot() +
theme_classic() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
theme(plot.title = element_text(hjust = 0.5, face="bold")) +
ggtitle("Unique Genes / Cell / Sample") +
scale_color_manual(values = sample_colors) +
scale_fill_manual(values = sample_colors) +
xlab("Sample")
b1
df <- data.frame(row.names = rownames(mouse.filtered))
df$rsum <- rowSums(x = mouse.filtered, slot = "counts")
df$gene_name <- rownames(df)
df <- df[order(df$rsum, decreasing = TRUE),]
colnames(df)[1] <- "rsum_raw_count"
head(df, 30)
## rsum_raw_count gene_name
## Malat1 8852580 Malat1
## Meg3 803471 Meg3
## Gm42418 632351 Gm42418
## Snhg11 589849 Snhg11
## Cst3 543699 Cst3
## Srrm2 171775 Srrm2
## Apoe 169222 Apoe
## Kcnq1ot1 149220 Kcnq1ot1
## Gria2 138148 Gria2
## R3hdm1 136552 R3hdm1
## Nrxn1 122678 Nrxn1
## Ctsd 117293 Ctsd
## Ctss 114740 Ctss
## Gm26917 114606 Gm26917
## Ahi1 111865 Ahi1
## Rian 107692 Rian
## Ptprd 103415 Ptprd
## Hexb 102375 Hexb
## C1qa 101719 C1qa
## C1qb 99022 C1qb
## Macf1 95535 Macf1
## Syne1 90737 Syne1
## Syt1 90044 Syt1
## Ank2 86509 Ank2
## Mycbp2 85895 Mycbp2
## Snhg14 85811 Snhg14
## AC149090.1 85717 AC149090.1
## Celf2 79533 Celf2
## Son 79097 Son
## Ube3a 77287 Ube3a
# log normalization
mouse.phase <- NormalizeData(mouse.filtered)
# load mouse cell cycle markers
phase.markers <- read.delim("../../refs/mouse_cell_cycle.txt")
colnames(phase.markers)[2] <- "gene_id"
phase.markers <- left_join(phase.markers, genes[,c(10,13)], by = "gene_id")
g2m <- phase.markers[phase.markers$phase == "G2/M", 4]
g2m
## [1] "Ube2c" "Lbr" "Ctcf" "Cdc20" "Cbx5" "Kif11" "Anp32e"
## [8] "Birc5" "Cdk1" "Tmpo" "Hmmr" "Jpt1" "Pimreg" "Aurkb"
## [15] "Top2a" "Gtse1" "Rangap1" "Cdca3" "Ndc80" "Kif20b" "Cenpf"
## [22] "Nek2" "Nuf2" "Nusap1" "Bub1" "Tpx2" "Aurka" "Ect2"
## [29] "Cks1b" "Kif2c" "Cdca8" "Cenpa" "Mki67" "Ccnb2" "Kif23"
## [36] "Smc4" "G2e3" "Tubb4b" "Anln" "Tacc3" "Dlgap5" "Ckap2"
## [43] "Ncapd2" "Ttk" "Ckap5" "Cdc25c" "Hjurp" "Cenpe" "Ckap2l"
## [50] "Cdca2" "Hmgb2" "Cks2" "Psrc1" "Gas2l3"
s <- phase.markers[phase.markers$phase == "S", 4]
s
## [1] "Cdc45" "Uhrf1" "Mcm2" "Slbp" "Mcm5" "Pola1"
## [7] "Gmnn" "Cdc6" "Rrm2" "Atad2" "Dscc1" "Mcm4"
## [13] "Chaf1b" "Rfc2" "Msh2" "Fen1" "Hells" "Prim1"
## [19] "Tyms" "Mcm6" "Wdr76" "Rad51" "Pcna" "Ccne2"
## [25] "Casp8ap2" "Usp1" "Nasp" "Rpa2" "Ung" "Rad51ap1"
## [31] "Blm" "Pold3" "Rrm1" "Cenpu" "Gins2" "Tipin"
## [37] "Brip1" "Dtl" "Exo1" "Ubr7" "Clspn" "E2f8"
## [43] "Cdca7"
# write table
write.table(phase.markers,
"../../results/ten_samples/cellcycle/mouse_cell_cycle_phase_markers.tsv",
quote = FALSE, sep = "\t", row.names = FALSE)
# score cells
mouse.phase <- CellCycleScoring(mouse.phase,
g2m.features = g2m,
s.features = s,
set.ident = TRUE)
mouse.filtered[["phase"]] <- mouse.phase$Phase
Find the top variable genes before performing PCA. The data is scaled since highly expressed genes usually are the most variable. This will make the mean expression zero and the variance of each gene across cells is one.
# Identify the most variable genes
mouse.phase <- FindVariableFeatures(mouse.phase, verbose = FALSE)
# Preview top 40
head(VariableFeatures(mouse.phase), 40)
## [1] "Spp1" "Apoe" "Cd74" "Lyz2" "Ptgds" "Ccl4"
## [7] "Tmsb4x" "Ccl12" "Flt1" "Fth1" "Bsg" "H2-Aa"
## [13] "Cxcl12" "Cldn5" "H2-Ab1" "H2-Eb1" "Plp1" "Rgs5"
## [19] "Cxcl10" "Ccl3" "Cst7" "Ctsd" "Vtn" "Ftl1"
## [25] "Rps29" "Mal" "Sst" "Actb" "Camk2n1" "Ccl5"
## [31] "Fau" "Tyrobp" "Slco1a4" "Itm2a" "Eef1a1" "Ifi27l2a"
## [37] "Cryab" "Selenow" "Vip" "Ifitm3"
# Scale the counts
mouse.phase <- ScaleData(mouse.phase)
## Centering and scaling data matrix
If the PCA plots for each phase do not look similar you may want to regress out variation due to cell cycle phase. Otherwise, nothing needs to be done. G1 (10 hrs) > G2/M (5-6 hrs) = S (5-6 hrs)
# Run PCA
mouse.phase <- RunPCA(mouse.phase, nfeatures.print = 10)
## PC_ 1
## Positive: R3hdm1, Atp2b1, Phactr1, Pde10a, Gria1, Homer1, Cit, Gm3764, Slc17a7, Pex5l
## Negative: Cst3, Tmsb4x, Ctsd, C1qb, C1qa, Itm2b, C1qc, Ctss, Hexb, Tyrobp
## PC_ 2
## Positive: Cx3cr1, Gpr34, Csf1r, Hexb, Lgmn, C1qc, Ctss, Lpcat2, C1qa, Tgfbr1
## Negative: Cox8a, Selenow, Rpl9, Cox4i1, Dbi, Mt3, Chchd2, Calm1, Rpl38, Rps19
## PC_ 3
## Positive: Atp1a2, Slc1a2, Slc1a3, Ntsr2, Ptprz1, Qk, Bcan, Appl2, Ndrg2, Sparcl1
## Negative: R3hdm1, Atp2b1, Homer1, Phactr1, Pde10a, Slc17a7, Plk2, Gria1, Cit, A830018L16Rik
## PC_ 4
## Positive: Camk2n1, Mt3, Pcsk1n, Selenow, Cox8a, Cpe, Dbi, Aldoc, 2900097C17Rik, Cox6c
## Negative: Flt1, Ahnak, Slco1a4, Rgs5, Pltp, Cldn5, Ly6a, Cxcl12, Ptprb, Egfl7
## PC_ 5
## Positive: Plp1, Mag, Mbp, Enpp2, Mal, Gjc3, Aspa, Gatm, Ptgds, Sept4
## Negative: Ntsr2, Gm6145, Gm3764, Slc1a2, Nwd1, Phkg1, Fgfr3, Slc1a3, Atp13a4, Slc7a10
# Plot
pca1 <- DimPlot(mouse.phase,
reduction = "pca",
group.by = "Phase",
split.by = "Phase")
pca1
pca2 <- DimPlot(mouse.phase,
reduction = "pca",
group.by = "Phase",
shuffle = TRUE)
pca2
data <- as.data.frame(table(mouse.phase$Phase))
colnames(data) <- c("Phase","frequency")
ncells3 <- ggplot(data, aes(x = Phase, y = frequency, fill = Phase)) +
geom_col() +
theme_classic() +
geom_text(aes(label = frequency),
position=position_dodge(width=0.9),
vjust=-0.25) +
ggtitle("Cells per phase")
ncells3
percent.phase <- mouse.phase@meta.data %>%
group_by(sample, Phase) %>%
dplyr::count() %>%
group_by(sample) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x = sample, y = percent, fill = Phase)) +
geom_col() +
ggtitle("Percentage of phase per sample") +
theme(axis.text.x = element_text(angle = 45, hjust=1))
percent.phase
Evaluating effects of mitochondrial expression
# Check quartile values and store
summary(mouse.phase$percent.mt)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 1.4398 0.7092 19.9800
first <- as.numeric(summary(mouse.phase$percent.mt)[2])
mean <- as.numeric(summary(mouse.phase$percent.mt)[4])
third <- as.numeric(summary(mouse.phase$percent.mt)[5])
# Turn percent.mt into factor based on quartile value
mouse.phase@meta.data$mito.factor <- cut(mouse.phase@meta.data$percent.mt,
breaks=c(-Inf, first, mean, third, Inf),
labels=c("Low","Medium","Medium high", "High"))
mouse.filtered[["mito.factor"]] <- mouse.phase$mito.factor
# Plot
pca1 <- DimPlot(mouse.phase,
reduction = "pca",
group.by = "mito.factor",
split.by = "mito.factor")
pca1
pca2 <- DimPlot(mouse.phase,
reduction = "pca",
group.by = "mito.factor",
shuffle = TRUE)
pca2
data <- as.data.frame(table(mouse.phase$mito.factor))
colnames(data) <- c("mito.factor","frequency")
ncells4 <- ggplot(data, aes(x = mito.factor, y = frequency, fill = mito.factor)) +
geom_col() +
theme_classic() +
geom_text(aes(label = frequency),
position=position_dodge(width=0.9),
vjust=-0.25) +
ggtitle("Cells per mitochondria level")
ncells4
percent <- mouse.phase@meta.data %>%
group_by(sample, mito.factor) %>%
dplyr::count() %>%
group_by(sample) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x = sample, y = percent, fill = mito.factor)) +
geom_col() +
ggtitle("Mitochondrial fraction per sample") +
theme(axis.text.x = element_text(angle = 45, hjust=1))
percent
Now, we can use the SCTransform method as a more accurate method of normalizing, estimating the variance of the raw filtered data, and identifying the most variable genes. Variation in sequencing depth (total nCount_RNA per cell) is normalized using a regularized negative binomial model.
Sctransform automatically accounts for cellular sequencing depth by regressing out sequencing depth (nUMIs). However, if there are other sources of uninteresting variation identified in the data during the exploration steps we can also include these. We observed little to no effect due to cell cycle phase or percent.mito and so we chose not to regress this out of our data.
Since we have 8 samples in our dataset we want to keep them as separate objects and transform them as that is what is required for integration.
# split
mouse.split <- SplitObject(mouse.filtered, split.by = "sample")
We will use a ‘for loop’ to run the SCTransform() on each sample, and regress out mitochondrial expression by specifying in the vars.to.regress argument of the SCTransform() function.
Before we run this for loop, we know that the output can generate large R objects/variables in terms of memory. If we have a large dataset, then we might need to adjust the limit for allowable object sizes within R (Default is 500 * 1024 ^ 2 = 500 Mb).
options(future.globals.maxSize = 4000 * 1024^5)
for (i in 1:length(mouse.split)) {
print(paste0("Sample ", i))
mouse.split[[i]] <- SCTransform(mouse.split[[i]],
verbose = FALSE,
vars.to.regress = "percent.mt")
}
## [1] "Sample 1"
## [1] "Sample 2"
## [1] "Sample 3"
## [1] "Sample 4"
## [1] "Sample 5"
## [1] "Sample 6"
## [1] "Sample 7"
## [1] "Sample 8"
## [1] "Sample 9"
## [1] "Sample 10"
remove(mouse.filtered)
# Choose the features to use when integrating multiple data sets
# We will use nfeatures as 3000 as defined by running SCTransform above
var.features <- SelectIntegrationFeatures(object.list = mouse.split,
nfeatures = 3000)
# merge the mouse
mouse.merged <- merge(x = mouse.split[[1]],
y = c(mouse.split[[2]], mouse.split[[3]],
mouse.split[[4]], mouse.split[[5]],
mouse.split[[6]], mouse.split[[7]],
mouse.split[[8]], mouse.split[[9]],
mouse.split[[10]]))
# define the variable features
VariableFeatures(mouse.merged) <- var.features
# run PCA on the merged object
mouse.merged <- RunPCA(object = mouse.merged, assay = "SCT")
# harmony dimensional reduction
mouse.integrated <- RunHarmony(object = mouse.merged,
group.by.vars = "sample",
assay.use = "SCT",
reduction = "pca",
plot_convergence = TRUE)
# save and cleanup
saveRDS(mouse.integrated, "../../rObjects/mouse_ten_samples_integrated.rds")
remove(mouse.split, var.features, mouse.merged)
# Reset idents and levels
DefaultAssay(mouse.integrated) <- "SCT"
Idents(mouse.integrated) <- "sample"
mouse.integrated$sample <- factor(mouse.integrated$sample,
levels = sample_order)
mouse.integrated$sex <- factor(mouse.integrated$sex,
levels = sex_order)
mouse.integrated$group <- factor(mouse.integrated$group,
levels = group_order)
# check PCA
p1 <- DimPlot(object = mouse.integrated,
reduction = "harmony",
group.by = "sample",
cols = sample_colors,
shuffle = TRUE) + NoLegend()
p1
p2 <- VlnPlot(object = mouse.integrated,
features = "harmony_1",
group.by = "sample",
pt.size = 0,
cols = sample_colors) + NoLegend()
p2
Top 20 variable features
top20 <- mouse.integrated@assays$SCT@var.features[1:20]
top20
## [1] "Cst3" "Apoe" "Ctss" "Tmsb4x" "Ctsd" "Fth1" "C1qa"
## [8] "C1qb" "Hexb" "Gm42418" "Plp1" "C1qc" "Cst7" "Snhg11"
## [15] "Trem2" "Cdr1os" "Ptgds" "Itm2b" "Mbp" "Ctsz"
After integration, to visualize the integrated data we can use dimensionality reduction techniques, such as PCA and Uniform Manifold Approximation and Projection (UMAP). While PCA will determine all PCs, we can only plot two at a time. In contrast, UMAP will take the information from any number of top PCs to arrange the cells in this multidimensional space. It will take those distances in multidimensional space, and try to plot them in two dimensions. In this way, the distances between cells represent similarity in expression.
To generate these visualizations with the harmony output, use reduction = “harmony”
# Plot PCA
pca1 <- DimPlot(mouse.integrated,
reduction = "harmony",
ncol = 3,
split.by = "sample",
group.by = "sample",
cols = sample_colors)
pca1
pca2 <- DimPlot(mouse.integrated,
reduction = "harmony",
split.by = "group",
group.by = "group",
cols = group_colors)
pca2
pca3 <- DimPlot(mouse.integrated,
reduction = "harmony",
split.by = "sex",
group.by = "sex",
cols = sex_colors)
pca3
To overcome the extensive technical noise in the expression of any single gene for scRNA-seq data, Seurat assigns cells to clusters based on their PCA scores derived from the expression of the integrated most variable genes, with each PC essentially representing a “metagene” that combines information across a correlated gene set. Determining how many PCs to include in the clustering step is therefore important to ensure that we are capturing the majority of the variation, or cell types, present in our dataset.
# Printing out the most variable genes driving PCs
print(x = mouse.integrated[["pca"]],
dims = 1:10,
nfeatures = 10)
## PC_ 1
## Positive: Cst3, C1qa, Ctss, C1qb, Hexb, Ctsd, C1qc, Itm2b, Trem2, Fcer1g
## Negative: Gm42418, R3hdm1, Ptprd, Gria2, Ahi1, Gm26917, Kcnq1ot1, Rian, Syt1, Nrxn1
## PC_ 2
## Positive: Tmsb4x, Fth1, Rpl13, Rps24, Eef1a1, Rps29, Fau, Rpl19, Rplp1, Tpt1
## Negative: Hexb, Ctss, C1qb, Cst3, C1qa, Gpr34, Ctsd, C1qc, Cx3cr1, Csf1r
## PC_ 3
## Positive: Slc1a2, Atp1a2, Slc1a3, Qk, Ptprz1, Bcan, Apoe, Appl2, Ntsr2, Ndrg2
## Negative: R3hdm1, Ahi1, Syt1, Rian, Arpp21, Snhg11, Celf2, Snhg14, Atp2b1, Trank1
## PC_ 4
## Positive: Plp1, Mbp, Neat1, Mag, Enpp2, P2ry12, Cx3cr1, Qk, Ptgds, Gatm
## Negative: Apoe, Cst7, Lyz2, Ctsb, Ctsz, Tyrobp, Cd63, Ctsl, Trem2, Slc1a2
## PC_ 5
## Positive: Plp1, Mbp, Neat1, Apoe, Mag, Cst7, Enpp2, Lyz2, Trf, Ptgds
## Negative: Cx3cr1, Slc1a2, P2ry12, Tmem119, Selplg, Serinc3, Lpcat2, Cst3, Csf1r, Ifngr1
## PC_ 6
## Positive: Tmsb4x, Actb, Marcks, Rgs10, Pfn1, Fau, Aif1, Rps9, Ftl1, Sh3bgrl3
## Negative: Gm42418, Camk2n1, Pcsk1n, Calm1, Selenow, Mt3, Cpe, Cox8a, Dbi, 2900097C17Rik
## PC_ 7
## Positive: Gm42418, Bsg, Flt1, Ahnak, H2-D1, Clec2d, H2-K1, Ifitm3, Slc2a1, Myl6
## Negative: Cst3, Plp1, C1qb, Mbp, C1qa, Ctss, Slc1a2, Neat1, Hexb, C1qc
## PC_ 8
## Positive: Gm42418, AY036118, Gm26917, C130073E24Rik, Rgs9, Erbb4, Dpp6, Usp29, Cacna2d2, Pde10a
## Negative: R3hdm1, Mef2c, Slc17a7, Ptprd, Arpp21, Camk2a, A830036E02Rik, Gpm6b, Homer1, Gria3
## PC_ 9
## Positive: Gm42418, Snhg11, Tcf4, Ptprd, Miat, Nrxn1, Peg3, Ntng1, Cpne7, Elavl2
## Negative: Rgs9, Pde10a, Phactr1, Gnal, Foxp1, Meis2, Pde1b, Dgkb, Cacna2d3, Unc13c
## PC_ 10
## Positive: Bsg, Flt1, Ahnak, Ptma, Slc2a1, Ifitm3, Atp1a2, Ptn, Spock2, Myl6
## Negative: Apoe, Fth1, Camk2n1, Cyth4, Gm42418, Pcsk1n, Hpgds, Mafb, Cst7, Maf
Quantitative approach to an elbow plot
- The point where the principal components only contribute 5% of standard deviation and the principal components cumulatively contribute 90% of the standard deviation.
- The point where the percent change in variation between the consecutive PCs is less than 0.1%.
First metric
# Determine percent of variation associated with each PC
stdv <- mouse.integrated[["pca"]]@stdev
sum.stdv <- sum(mouse.integrated[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
# Calculate cumulative percents for each PC
cumulative <- cumsum(percent.stdv)
# Determine which PC exhibits cumulative percent greater than 90% and
# and % variation associated with the PC as less than 5
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co1
## [1] 41
Second metric
# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which(
(percent.stdv[1:length(percent.stdv) - 1] -
percent.stdv[2:length(percent.stdv)]) > 0.1),
decreasing = T)[1] + 1
# last point where change of % of variation is more than 0.1%.
co2
## [1] 15
Choose the minimum of these two metrics as the PCs covering the majority of the variation in the data.
# Minimum of the two calculation
min.pc <- min(co1, co2)
min.pc
## [1] 15
Use min.pc we just calculated to generate the clusters. We can plot the elbow plot again and overlay the information determined using our metrics:
# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv,
cumu = cumulative,
rank = 1:length(percent.stdv))
# Elbow plot to visualize
ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) +
geom_text() +
geom_vline(xintercept = 90, color = "grey") +
geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
theme_bw()
# Run UMAP
mouse.integrated <- RunUMAP(mouse.integrated,
dims = 1:min.pc,
reduction = "harmony",
n.components = 3) # set to 3 to use with VR
# plot UMAP
DimPlot(mouse.integrated,
shuffle = TRUE)
Seurat uses a graph-based clustering approach, which embeds cells in a graph structure, using a K-nearest neighbor (KNN) graph (by default), with edges drawn between cells with similar gene expression patterns. Then, it attempts to partition this graph into highly interconnected ‘quasi-cliques’ or ‘communities’ [Seurat - Guided Clustering Tutorial].
We will use the FindClusters() function to perform the graph-based clustering. The resolution is an important argument that sets the “granularity” of the downstream clustering and will need to be optimized for every individual experiment. For datasets of 3,000 - 5,000 cells, the resolution set between 0.4-1.4 generally yields good clustering. Increased resolution values lead to a greater number of clusters, which is often required for larger datasets.
The FindClusters() function allows us to enter a series of resolutions and will calculate the “granularity” of the clustering. This is very helpful for testing which resolution works for moving forward without having to run the function for each resolution.
# Determine the K-nearest neighbor graph
mouse.unannotated <- FindNeighbors(object = mouse.integrated,
assay = "SCT", # set as default after SCTransform
reduction = "harmony",
dims = 1:min.pc)
# Determine the clusters for various resolutions
mouse.unannotated <- FindClusters(object = mouse.unannotated,
algorithm = 1, # 1 = Louvain
resolution = seq(0.1,0.5,by=0.1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 51063
## Number of edges: 1617833
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9621
## Number of communities: 7
## Elapsed time: 17 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 51063
## Number of edges: 1617833
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9435
## Number of communities: 9
## Elapsed time: 19 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 51063
## Number of edges: 1617833
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9273
## Number of communities: 9
## Elapsed time: 19 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 51063
## Number of edges: 1617833
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9152
## Number of communities: 15
## Elapsed time: 20 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 51063
## Number of edges: 1617833
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9053
## Number of communities: 16
## Elapsed time: 20 seconds
mouse.unannotated$seurat_clusters <- mouse.unannotated$SCT_snn_res.0.3
# 0.1
DimPlot(mouse.unannotated,
group.by = "SCT_snn_res.0.1",
label = TRUE)
# 0.2
DimPlot(mouse.unannotated,
group.by = "SCT_snn_res.0.2",
label = TRUE)
# 0.3
DimPlot(mouse.unannotated,
group.by = "SCT_snn_res.0.3",
label = TRUE)
# 0.4
DimPlot(mouse.unannotated,
group.by = "SCT_snn_res.0.4",
label = TRUE)
# 0.5
DimPlot(mouse.unannotated,
group.by = "SCT_snn_res.0.5",
label = TRUE)
embeddings <- mouse.unannotated@reductions$umap@cell.embeddings
embeddings <- cbind(embeddings, as.character(mouse.unannotated$seurat_clusters))
colnames(embeddings)[4] <- "seurat_clusters"
embeddings <- as.data.frame(embeddings)
embeddings$seurat_clusters <- factor(embeddings$seurat_clusters,
levels = c("0","1","2","3","4",
"5","6","7","8"))
cluster_colors <- c("gray","red1","yellow","green", "darkgreen","cyan",
"blue","plum1","magenta1")
three.dim <- plot_ly(embeddings,
x = ~UMAP_1,
y = ~UMAP_2,
z = ~UMAP_3,
color = ~seurat_clusters,
colors = cluster_colors,
size = 1)
three.dim <- three.dim %>% add_markers()
three.dim <- three.dim %>% layout(scene = list(xaxis = list(title = 'UMAP_1'),
yaxis = list(title = 'UMAP_2'),
zaxis = list(title = 'UMAP_3')))
three.dim
# not split
Idents(mouse.unannotated) <- "SCT_snn_res.0.3"
u0 <- DimPlot(mouse.unannotated,
label = FALSE,
cols = cluster_colors)
u0
# sample
u1 <- DimPlot(mouse.unannotated,
label = FALSE,
cols = cluster_colors,
split.by = "sample",
ncol = 3)
u1
# group
u2 <- DimPlot(mouse.unannotated,
label = FALSE,
cols = cluster_colors,
split.by = "group")
u2
# sex
u3 <- DimPlot(mouse.unannotated,
label = FALSE,
cols = cluster_colors,
split.by = "sex")
u3
# phase
u4 <- DimPlot(mouse.unannotated,
label = FALSE,
cols = cluster_colors,
split.by = "phase")
u4
# mito.factor
u5 <- DimPlot(mouse.unannotated,
label = FALSE,
cols = cluster_colors,
split.by = "mito.factor",ncol = 2)
u5
# nCount
f1 <- FeaturePlot(mouse.unannotated,
features = "nCount_RNA",
pt.size = 0.4,
order = TRUE) +
scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f1
# nFeature
f2 <- FeaturePlot(mouse.unannotated,
features = "nFeature_RNA",
pt.size = 0.4,
order = TRUE) +
scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f2
# percent.mt
f3 <- FeaturePlot(mouse.unannotated,
features = "percent.mt",
pt.size = 0.4,
order = TRUE) +
scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f3
# cell.complexity
f4 <- FeaturePlot(mouse.unannotated,
features = "cell.complexity",
pt.size = 0.4,
order = TRUE) +
scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f4
# percent.ribo
f5 <- FeaturePlot(mouse.unannotated,
features = "percent.ribo.protein",
pt.size = 0.4,
order = TRUE) +
scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f5
# percent.hb
f6 <- FeaturePlot(mouse.unannotated,
features = "percent.hb",
pt.size = 0.4,
order = TRUE) +
scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f6
# percent.ttr
f7 <- FeaturePlot(mouse.unannotated,
features = "percent.ttr",
pt.size = 0.4,
order = TRUE) +
scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f7
# sample
b1 <- mouse.unannotated@meta.data %>%
group_by(seurat_clusters, sample) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=sample)) +
theme_classic() +
geom_col() +
scale_fill_manual(values = sample_colors) +
ggtitle("Percentage of sample per cluster")
b1
# group
b2 <- mouse.unannotated@meta.data %>%
group_by(seurat_clusters, group) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=group)) +
theme_classic() +
geom_col() +
scale_fill_manual(values = group_colors) +
ggtitle("Percentage of group per cluster")
b2
# sex
b3 <- mouse.unannotated@meta.data %>%
group_by(seurat_clusters, sex) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=sex)) +
theme_classic() +
geom_col() +
scale_fill_manual(values = sex_colors) +
ggtitle("Percentage of sex per cluster")
b3
# phase
b4 <- mouse.unannotated@meta.data %>%
group_by(seurat_clusters, phase) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=phase)) +
theme_classic() +
geom_col() +
ggtitle("Percentage of phase per cluster")
b4
# mito.factor
b5 <- mouse.unannotated@meta.data %>%
group_by(seurat_clusters, mito.factor) %>%
dplyr::count() %>%
group_by(seurat_clusters) %>%
dplyr::mutate(percent = 100*n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x=seurat_clusters,y=percent, fill=mito.factor)) +
theme_classic() +
geom_col() +
ggtitle("Percentage of mito.factor per cluster")
b5
# sample
sample_ncells <- FetchData(mouse.unannotated,
vars = c("ident", "sample")) %>%
dplyr::count(ident, sample) %>%
tidyr::spread(ident, n)
sample_ncells
## sample 0 1 2 3 4 5 6 7 8
## 1 IgG.F.939A 1146 1351 932 586 327 344 661 294 216
## 2 IgG.F.939B 158 62 286 50 8 8 44 82 11
## 3 IgG.F.959B 238 99 421 72 20 15 78 137 11
## 4 IgG.M.823A 4597 2556 1194 1607 923 449 361 330 242
## 5 IgG.M.851A 5245 2995 1321 1951 861 724 595 313 252
## 6 Adu.F.736B 153 60 215 31 12 6 43 77 5
## 7 Adu.F.738A 16 4 28 5 1 2 6 18 1
## 8 Adu.F.738B 574 292 824 169 50 46 88 266 33
## 9 Adu.M.705A 1702 950 804 771 403 407 200 551 193
## 10 Adu.M.734A 2294 1573 1102 1009 704 504 316 146 236
write.table(sample_ncells,
"../../results/ten_samples/ncells/cells_per_cluster_per_sample_uannotated.tsv",
quote = FALSE, sep = "\t", row.names = FALSE)
# group
group_ncells <- FetchData(mouse.unannotated,
vars = c("ident", "group")) %>%
dplyr::count(ident, group) %>%
tidyr::spread(ident, n)
group_ncells
## group 0 1 2 3 4 5 6 7 8
## 1 IgG 11384 7063 4154 4266 2139 1540 1739 1156 732
## 2 Adu 4739 2879 2973 1985 1170 965 653 1058 468
write.table(group_ncells,
"../../results/ten_samples/ncells/cells_per_cluster_per_group_unannotated.tsv",
quote = FALSE, sep = "\t", row.names = FALSE)
# sex
sex_ncells <- FetchData(mouse.unannotated,
vars = c("ident", "sex")) %>%
dplyr::count(ident, sex) %>%
tidyr::spread(ident, n)
sex_ncells
## sex 0 1 2 3 4 5 6 7 8
## 1 Male 13838 8074 4421 5338 2891 2084 1472 1340 923
## 2 Female 2285 1868 2706 913 418 421 920 874 277
write.table(sex_ncells,
"../../results/ten_samples/ncells/cells_per_cluster_per_sex_unannoated.tsv",
quote = FALSE, sep = "\t", row.names = FALSE)
# mito.factor
mito.factor_ncells <- FetchData(mouse.unannotated,
vars = c("ident", "mito.factor")) %>%
dplyr::count(ident, mito.factor) %>%
tidyr::spread(ident, n)
mito.factor_ncells
## mito.factor 0 1 2 3 4 5 6 7 8
## 1 High 635 577 4375 339 103 599 2072 1103 294
## 2 Low 14055 7279 666 4990 2789 1015 91 100 516
## 3 Medium 1176 1653 1267 730 323 647 73 654 278
## 4 Medium high 257 433 819 192 94 244 156 357 112
write.table(mito.factor_ncells,
"../../results/ten_samples/ncells/cells_per_cluster_per_mito_factor_unannotated.tsv",
quote = FALSE, sep = "\t", row.names = FALSE)
# phase
phase_ncells <- FetchData(mouse.unannotated,
vars = c("ident", "phase")) %>%
dplyr::count(ident, phase) %>%
tidyr::spread(ident, n)
phase_ncells
## phase 0 1 2 3 4 5 6 7 8
## 1 G1 5657 3550 4032 2470 1425 783 1254 1116 422
## 2 G2M 4891 2999 1505 2436 811 1117 699 600 426
## 3 S 5575 3391 1590 1345 1073 605 439 498 352
## 4 Undecided NA 2 NA NA NA NA NA NA NA
write.table(phase_ncells,
"../../results/ten_samples/ncells/cells_per_cluster_per_phase_unannotated.tsv",
quote = FALSE, sep = "\t", row.names = FALSE)
DefaultAssay(mouse.unannotated) <- "RNA"
mouse.unannotated <- NormalizeData(mouse.unannotated)
Idents(mouse.unannotated) <- "SCT_snn_res.0.3"
VlnPlot(mouse.unannotated,
features = "Aqp4",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Gfap",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Gja1",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Pecam1",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cdh5",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Kdr",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Flt1",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Col1a1",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Col1a2",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Dcn",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Tmem119",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Itgam", # aka Cd11b
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cd14",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cd68",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Ccr5",
cols = cluster_colors,
group.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Gad1",
cols = cluster_colors,
split.by = "seurat_clusters")
## The default behaviour of split.by has changed.
## Separate violin plots are now plotted side-by-side.
## To restore the old behaviour of a single split violin,
## set split.plot = TRUE.
##
## This message will be shown once per session.
VlnPlot(mouse.unannotated,
features = "Gad2",
cols = cluster_colors,
split.by = "seurat_clusters")
VlnPlot(mouse.unannotated,
features = "Slc32a1",
cols = cluster_colors,
split.by = "seurat_clusters")
VlnPlot(mouse.unannotated,
features = "Cspg5",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Gpr17",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Olig1",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Acta2", # actin alpha 2, smooth muscle
cols = cluster_colors)
VlnPlot(mouse.unannotated,
features = "Trac",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cd3d",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cd3e",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cd3g",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cd8a",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
VlnPlot(mouse.unannotated,
features = "Cd4",
cols = cluster_colors,
split.by = "SCT_snn_res.0.3")
mouse.unannotated@assays$RNA@var.features <- mouse.unannotated@assays$SCT@var.features
metadata <- mouse.unannotated@meta.data
metadata <- metadata[,c(1,21,2:20)]
mouse.unannotated@meta.data <- metadata
mouse.unannotated@assays$SCT@meta.features <- metadata
mouse.unannotated@assays$RNA@meta.features <- metadata
# make shiny folder
DefaultAssay(mouse.unannotated) <- "RNA"
Idents(mouse.unannotated) <- mouse.unannotated$seurat_clusters
sc.config <- createConfig(mouse.unannotated)
makeShinyApp(mouse.unannotated, sc.config, gene.mapping = TRUE,
shiny.title = "ten_samples")