library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Reading the file into R from githib
rawfile <- read.csv("https://raw.githubusercontent.com/johnnyboy1287/hwflight/main/hwflight.csv")
# Placing the data into a data frame
rawfiledf <- data.frame(rawfile)
# Dropping the row with blank values
rawfiledf <- drop_na(rawfiledf)
# Renaming the columns
rawfiledf <- rename(rawfiledf, "Origin"=X, "Status"=X.1)
# Changing the row names
rawfiledf[2,1]="ALASKA"
rawfiledf[4,1]="AM WEST"
# Creating a long data set with pivot longer
tidydf = pivot_longer(rawfiledf, cols = c("Los.Angeles","Phoenix", "San.Diego", "San.Francisco", "Seattle"), values_to="Number_of_Flights")
# view data
tidydf
## # A tibble: 20 × 4
## Origin Status name Number_of_Flights
## <chr> <chr> <chr> <int>
## 1 ALASKA on time Los.Angeles 497
## 2 ALASKA on time Phoenix 221
## 3 ALASKA on time San.Diego 212
## 4 ALASKA on time San.Francisco 503
## 5 ALASKA on time Seattle 1841
## 6 ALASKA delayed Los.Angeles 62
## 7 ALASKA delayed Phoenix 12
## 8 ALASKA delayed San.Diego 20
## 9 ALASKA delayed San.Francisco 102
## 10 ALASKA delayed Seattle 305
## 11 AM WEST on time Los.Angeles 694
## 12 AM WEST on time Phoenix 4840
## 13 AM WEST on time San.Diego 383
## 14 AM WEST on time San.Francisco 320
## 15 AM WEST on time Seattle 201
## 16 AM WEST delayed Los.Angeles 117
## 17 AM WEST delayed Phoenix 415
## 18 AM WEST delayed San.Diego 65
## 19 AM WEST delayed San.Francisco 129
## 20 AM WEST delayed Seattle 61
with(tidydf,sum(Number_of_Flights[Origin=="ALASKA" & Status == "delayed"]))/with(tidydf,sum(Number_of_Flights[Origin=="ALASKA"]))
## [1] 0.1327152
with(tidydf,sum(Number_of_Flights[Origin=="AM WEST" & Status == "delayed"]))/with(tidydf,sum(Number_of_Flights[Origin=="AM WEST"]))
## [1] 0.1089273
Based on my analysis, AM West had the lower percentage of delayed flights compared to Alaska.