GEOG6000 Methods of Data Analysis Lab 03

Experiment using R Markup in HTML

Plotting Types

setwd("~/Desktop/University of Utah PhD /Course Work/Fall 2022 Semester/GEOG6000_Data Analysis/lab03") ##Set working directory

##Bar Plots

VAdeaths = read.csv("../datafiles/VAdeaths.csv", row.names = 1)
mycol = heat.colors(5)
barplot(as.matrix(VAdeaths), beside=T, legend = rownames(VAdeaths),
        col = mycol,
        main = "VA Deaths by Age",
        ylab = "Number of Deaths",
        xlab = "Location and Sex")

Dot Charts!

VAdeaths.m = as.matrix(VAdeaths)
dotchart(VAdeaths.m)

##Transpose the matrix --> Ask about this in lab...I am still having difficulty conceptualizing the data organizing coding we are using***

##Data Structures
#Data can be numeric, factor, character, or boolean
#Vector is a set a values in one dimension
#Matrix is a 2 dimensional type rows/columns
#Array is like a matrix with more then 2 rows/columns
#Data Frame like csv file
##'as' functions convert data types to use for the function, i.e. as.matrix

dotchart(t(VAdeaths.m)) 

##Transpose for rural/urban category to the age bracket##

Plotting Multiple Series with Points

cmp = c(52, 57, 62, 67, 72)
plot (cmp, VAdeaths$Rural.Male, pch = 1, col= 1, ylim = c(0,70),
      xlab = "Age Class",
      ylab = "Mortalitiy",
      main = " Virginia Death Rates")
points(cmp, VAdeaths$Rural.Female, pch = 2, col = 2)
points(cmp, VAdeaths$Urban.Male, pch = 3, col = 3)
points(cmp, VAdeaths$Urban.Female, pch = 4, col = 4)
legend("topleft", legend = c("Rural Male", "Rural Female", "Urban Male", "Urban Female"),
       col = c(1, 2, 3, 4), pch = c(1,2,3,4))

##This code concatenated the each group to its own symbol and color on the plot and legend.
##1, 2, 3, 4 was in order of rural male, rural female, urban male, and urban female

Plotting Multiple Series with Lines

ipcc = read.csv("../datafiles/ipccScenario_1900_2100.csv")
plot(ipcc$yrs, ipcc$commitMed, 
     type = 'l',
     lwd = 1,
     col = 'orange',
     ylim = c(-1.0,3.5), 
     main = 'IPCC Scenarios', 
     xlab = 'Years',
     ylab = 'Global Temp.')
lines(ipcc$yrs, ipcc$b1Med, lwd = 1, col = "blue")
lines(ipcc$yrs, ipcc$a1bMed, lwd = 1, col = 'green')
lines(ipcc$yrs, ipcc$a2Med, lwd = 1, col = 'red')
###This plot takes multiple data and plots them against a common x axis which is in the first part of the plot and line argument

abline(h = 0, lty = 2)
legend("topleft", legend = c("Commit", "B1", "A1B", "A2"), 
       lty = 1,
       lwd = 1,
       col = c('orange', 'blue', 'green', 'red'))

##Experiment with elements of the chart to make it more visually appealing

Plotting Polygons

plot(ipcc$yrs, ipcc$commitMed, 
     type = 'n', 
     ylim = c(-1.5,1.0), 
     main = 'Commit Scenario',
     xlab = 'Years',
     ylab = 'Global Temp.')
##This produces a "blank plot with an x and y axis along with labels

polygon(c(ipcc$yrs,rev(ipcc$yrs)),c(ipcc$commitLo,rev(ipcc$commitHi)), 
        col = 'orange')
##How does the "rev" function work??****
##Need to reverse it in order to give it its total set of vertices instead of going back to the beginning (think drawing as opposed to typewriter)

lines(ipcc$yrs, ipcc$commitMed, 
      lwd = 2, 
      col = 'black')

Polygon Fill with Shading Lines

plot(ipcc$yrs, ipcc$commitMed, 
     type = 'n', 
     ylim = c(-1.5,1.0))

polygon(c(ipcc$yrs,rev(ipcc$yrs)),c(ipcc$commitLo,rev(ipcc$commitHi)), 
    col = 'orange', 
    density = 20, 
    angle = 145)
lines(ipcc$yrs, ipcc$commitMed, 
      lwd = 2, 
      col = 'black')

Plotting Images

volcano = read.table("../datafiles/volcanodem.txt")
volcano = as.matrix(volcano)
##Where do the the V"n" columns come from? Matrix transition?

z = 2 * volcano ##Exaggerate the relief
x = 10 * (1:nrow(z))
y = 10 * (1:ncol(z))

##Not sure how we are organizing the data here.

image(x, y, z)

Image with better color scheme:

image(x, y, z, col = terrain.colors(100))

Contour Plot:

contour(x, y, z, nlevel = 20)

##Can this be used for isopleths???

Perspective Plot:

persp(x, y, z,theta = 210, phi = 15, scale = FALSE)

##Neat!

Shaded Perspective Plot

persp(x, y, z, 
      theta = 130, 
      phi = 30, 
      scale = FALSE, 
      col = 'green3', 
      ltheta = -120, 
      shade = 0.75, 
      border = NA, 
      box = FALSE)

##ltheta controls the light angle
##shade controls the diffusion of the lighting 
#phi is the vertical angle
#theta is the horizontal view angle
pdf('volcano.pdf')
image(x, y, z, 
      col = terrain.colors(100), 
      main = "Maunga Whau DEM")
dev.off()
## quartz_off_screen 
##                 2
##Export to .pdf

Simple Linear Regression

regrex = read.csv("../datafiles/regrex.csv")
summary(regrex)
##        y                x          
##  Min.   : 2.281   Min.   : 0.8347  
##  1st Qu.: 3.830   1st Qu.: 3.6437  
##  Median : 7.006   Median : 9.8750  
##  Mean   : 6.971   Mean   :10.0678  
##  3rd Qu.: 9.257   3rd Qu.:14.4428  
##  Max.   :15.000   Max.   :25.0000
plot( y ~ x, data=regrex)

cor.test(regrex$x, regrex$y)
## 
##  Pearson's product-moment correlation
## 
## data:  regrex$x and regrex$y
## t = 19.194, df = 28, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9250459 0.9829233
## sample estimates:
##       cor 
## 0.9640353
ex1.lm = lm( y ~ x, data = regrex)
ex1.lm
## 
## Call:
## lm(formula = y ~ x, data = regrex)
## 
## Coefficients:
## (Intercept)            x  
##      2.2481       0.4691
anova(ex1.lm)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## x          1 283.947 283.947   368.4 < 2.2e-16 ***
## Residuals 28  21.581   0.771                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Is this appropriate given only two variables?
summary(ex1.lm)
## 
## Call:
## lm(formula = y ~ x, data = regrex)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.66121 -0.53286 -0.02869  0.50436  2.36786 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.24814    0.29365   7.656 2.44e-08 ***
## x            0.46906    0.02444  19.194  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8779 on 28 degrees of freedom
## Multiple R-squared:  0.9294, Adjusted R-squared:  0.9268 
## F-statistic: 368.4 on 1 and 28 DF,  p-value: < 2.2e-16

This model seems to be a good fit based on the residuals distribution, p-value, and adjusted r-squared

Plotting the regression with a line

plot( y ~ x, data = regrex,
      main = "Linear Regression Example",
      xlab = "X",
      ylab = "Y",
      col = "blue",
      pch = 2)
abline(ex1.lm, col = "red")

Model Standard Errors

predict(ex1.lm, level = 0.95, interval = "conf")
##          fit       lwr       upr
## 1   6.868031  6.539515  7.196547
## 2   7.475842  7.143110  7.808574
## 3   4.650164  4.238912  5.061416
## 4   6.051534  5.708864  6.394204
## 5   3.917958  3.455424  4.380491
## 6   3.180779  2.659831  3.701728
## 7   9.533712  9.106359  9.961065
## 8   5.775585  5.423353  6.127816
## 9   8.824490  8.441149  9.207830
## 10  5.776711  5.424523  6.128899
## 11  8.968492  8.576998  9.359986
## 12  4.075140  3.624265  4.526015
## 13  3.125618  2.600085  3.651150
## 14  2.639669  2.072716  3.206622
## 15 10.851355 10.322830 11.379880
## 16  3.028897  2.495266  3.562528
## 17 10.249360  9.769518 10.729202
## 18  6.581106  6.250152  6.912059
## 19 12.098451 11.460251 12.736650
## 20  3.903276  3.439638  4.366914
## 21 13.974700 13.158269 14.791131
## 22  6.892235  6.563795  7.220674
## 23 10.503170 10.003231 11.003109
## 24  8.758258  8.378518  9.137998
## 25  7.346381  7.015607  7.677155
## 26  8.169491  7.817107  8.521876
## 27  2.704024  2.142656  3.265393
## 28  9.040821  8.645070  9.436572
## 29  3.270323  2.756759  3.783888
## 30 10.881328 10.350293 11.412363
##What am I looking at?
##Fit = predicted value
##lwr = lower interval
##upr = upper interval -> In this case 95%?
newx = data.frame(x = -1:30) ##New data frame with values x from -1 to 30

newy = predict(ex1.lm, newdata = newx,
               level = 0.95,
               interval = "conf") ##prediction of our new y values with our new data newx

str(newy)
##  num [1:32, 1:3] 1.78 2.25 2.72 3.19 3.66 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:32] "1" "2" "3" "4" ...
##   ..$ : chr [1:3] "fit" "lwr" "upr"
plot( y ~ x, data=regrex, 
    pch = 16,
    main = 'Model Confidence Intervals')

lines(newx$x, newy[,"fit"], col = 2) ##predicted values of x...or fit?
lines(newx$x, newy[,"lwr"], col = 3, lty = 2) ##lower confidence interval?
lines(newx$x, newy[,"upr"], col = 3, lty = 2) ##upper confidence interval?

Residual Plots

ex1.res = residuals (ex1.lm) ##creating a variable for the residuals
hist(ex1.res)

plot(ex1.lm, which = 1)

##Question on this
plot(ex1.lm, which = 2)

plot(ex1.lm, which = 4)

shapiro.test(ex1.res)
## 
##  Shapiro-Wilk normality test
## 
## data:  ex1.res
## W = 0.97685, p-value = 0.7371
#The null hypothesis is that the data are normally distributed. Here we get a high p-value, and no evidence to reject the null.

GG PLot Example During Lab (September 8, 2022)

library(ggplot2)
library(ggthemes)

head(ipcc)
##    yrs  commitLo  commitMed   commitHi      b1Lo     b1Med       b1Hi     a1bLo
## 1 1900 -1.249695 -0.7738950 -0.4706987 -1.297196 -0.728424 -0.2830675 -1.297196
## 2 1901 -1.271248 -0.7549440 -0.4823416 -1.331284 -0.817597 -0.3107170 -1.331284
## 3 1902 -1.277435 -0.7278140 -0.4359170 -1.277878 -0.772888 -0.3653695 -1.277878
## 4 1903 -1.432007 -0.9645080 -0.5018959 -1.448410 -0.979095 -0.4230190 -1.444413
## 5 1904 -1.475003 -0.9552915 -0.3693616 -1.477845 -0.990509 -0.3251775 -1.473847
## 6 1905 -1.259312 -0.8682560 -0.3919640 -1.275238 -0.878296 -0.3458400 -1.271241
##      a1bMed      a1bHi      a2Lo     a2Med       a2Hi
## 1 -0.728424 -0.4105530 -1.260944 -0.728424 -0.4130732
## 2 -0.817597 -0.4692840 -1.282025 -0.817597 -0.4438598
## 3 -0.772888 -0.5234835 -1.285516 -0.773956 -0.4910338
## 4 -0.979095 -0.4545900 -1.461756 -0.979095 -0.4747374
## 5 -0.990509 -0.3253635 -1.499365 -1.022706 -0.3149656
## 6 -0.878296 -0.4089970 -1.289893 -0.894043 -0.3495362
##need to put it into long format data

plot_df = data.frame(
  yrs = rep(ipcc$yrs, 4), #replicate 4 columns by year
  cilo = c(ipcc$commitLo, ipcc$b1Lo, ipcc$a1bLo, ipcc$a2Lo),
  cihi = c(ipcc$commitHi, ipcc$b1Hi, ipcc$a1bHi, ipcc$a2Hi),
  med = c(ipcc$commitMed, ipcc$b1Med, ipcc$a1bMed, ipcc$a2Med),
  scenario = rep(c('Commit', 'b1', 'a1b', 'a2'), each = nrow(ipcc))
)

plot_df
##      yrs         cilo         cihi        med scenario
## 1   1900 -1.249695250 -0.470698750 -0.7738950   Commit
## 2   1901 -1.271247750 -0.482341625 -0.7549440   Commit
## 3   1902 -1.277435375 -0.435917000 -0.7278140   Commit
## 4   1903 -1.432007375 -0.501895875 -0.9645080   Commit
## 5   1904 -1.475002625 -0.369361625 -0.9552915   Commit
## 6   1905 -1.259312125 -0.391964000 -0.8682560   Commit
## 7   1906 -1.193469875 -0.528411750 -0.8206175   Commit
## 8   1907 -1.213142375 -0.503215375 -0.7650755   Commit
## 9   1908 -1.382938250 -0.376731375 -0.7171630   Commit
## 10  1909 -1.346119000 -0.346671750 -0.7363120   Commit
## 11  1910 -1.208850625 -0.463943250 -0.6988675   Commit
## 12  1911 -1.299510875 -0.477496625 -0.7300565   Commit
## 13  1912 -1.253853000 -0.459686125 -0.7516785   Commit
## 14  1913 -1.170108875 -0.541373875 -0.7887725   Commit
## 15  1914 -1.172077250 -0.563056500 -0.8452145   Commit
## 16  1915 -1.143642250 -0.470172875 -0.7923430   Commit
## 17  1916 -1.125194250 -0.363517500 -0.7026675   Commit
## 18  1917 -1.294612875 -0.505202875 -0.6505735   Commit
## 19  1918 -1.230450000 -0.450122625 -0.6823120   Commit
## 20  1919 -1.093258125 -0.399363875 -0.6559600   Commit
## 21  1920 -1.220935375 -0.394255875 -0.6564945   Commit
## 22  1921 -1.218002250 -0.501464750 -0.6831660   Commit
## 23  1922 -1.074794500 -0.395710125 -0.6636815   Commit
## 24  1923 -1.017368250 -0.398242875 -0.6171870   Commit
## 25  1924 -1.109744875 -0.433758125 -0.6927945   Commit
## 26  1925 -1.118492250 -0.481971375 -0.6569670   Commit
## 27  1926 -1.158561500 -0.506595750 -0.6294250   Commit
## 28  1927 -1.144611625 -0.453494750 -0.5916600   Commit
## 29  1928 -1.036552000 -0.508056750 -0.6502535   Commit
## 30  1929 -1.084983750 -0.396220750 -0.6577300   Commit
## 31  1930 -1.251670625 -0.433547625 -0.6029660   Commit
## 32  1931 -1.226871250 -0.444514875 -0.6536865   Commit
## 33  1932 -1.062671500 -0.420367875 -0.6436160   Commit
## 34  1933 -1.020621750 -0.433689250 -0.6819765   Commit
## 35  1934 -1.122669375 -0.473956750 -0.5988160   Commit
## 36  1935 -1.012603500 -0.462146125 -0.6158910   Commit
## 37  1936 -0.998916250 -0.495780375 -0.5680540   Commit
## 38  1937 -1.020847250 -0.450264125 -0.6315765   Commit
## 39  1938 -1.041431375 -0.394321125 -0.5868835   Commit
## 40  1939 -0.971298250 -0.363247000 -0.5763400   Commit
## 41  1940 -0.999210375 -0.415267500 -0.6200560   Commit
## 42  1941 -1.065925125 -0.427284000 -0.5216065   Commit
## 43  1942 -0.964511625 -0.340339500 -0.5852965   Commit
## 44  1943 -0.966216750 -0.427253625 -0.5703585   Commit
## 45  1944 -0.966526250 -0.399078500 -0.6293640   Commit
## 46  1945 -0.908572875 -0.419608500 -0.5138090   Commit
## 47  1946 -0.956291500 -0.412982625 -0.5893245   Commit
## 48  1947 -0.948387125 -0.365982250 -0.6245270   Commit
## 49  1948 -0.919135625 -0.376110250 -0.5629120   Commit
## 50  1949 -0.991355625 -0.402358875 -0.5658110   Commit
## 51  1950 -0.934784250 -0.345519625 -0.5062260   Commit
## 52  1951 -0.878402500 -0.388782875 -0.5418095   Commit
## 53  1952 -0.987171625 -0.383186625 -0.4927215   Commit
## 54  1953 -0.884605125 -0.369002875 -0.5376895   Commit
## 55  1954 -0.861865875 -0.435542875 -0.5104525   Commit
## 56  1955 -0.844169375 -0.303348375 -0.4947510   Commit
## 57  1956 -0.854648625 -0.222824375 -0.4890140   Commit
## 58  1957 -0.845253000 -0.349799875 -0.4721530   Commit
## 59  1958 -0.846984875 -0.235370750 -0.5388180   Commit
## 60  1959 -0.877689000 -0.307303750 -0.4560850   Commit
## 61  1960 -0.847709625 -0.330024125 -0.5155335   Commit
## 62  1961 -0.813155750 -0.302162250 -0.5002440   Commit
## 63  1962 -0.867408750 -0.323013000 -0.5389255   Commit
## 64  1963 -0.921714875 -0.359638125 -0.5402220   Commit
## 65  1964 -0.904456500 -0.333323875 -0.6610415   Commit
## 66  1965 -0.863941000 -0.343032500 -0.6826475   Commit
## 67  1966 -0.807129125 -0.370548250 -0.5984345   Commit
## 68  1967 -0.762657000 -0.307086875 -0.5698545   Commit
## 69  1968 -0.757614250 -0.295913625 -0.5381625   Commit
## 70  1969 -0.744003000 -0.413547375 -0.5801240   Commit
## 71  1970 -0.706707000 -0.366035125 -0.5136265   Commit
## 72  1971 -0.721317625 -0.206969750 -0.5258940   Commit
## 73  1972 -0.648498625 -0.269374125 -0.5080565   Commit
## 74  1973 -0.675365750 -0.292972000 -0.5076600   Commit
## 75  1974 -0.684280375 -0.205260750 -0.4404910   Commit
## 76  1975 -0.679462625 -0.177757375 -0.4924165   Commit
## 77  1976 -0.646770250 -0.281791250 -0.4546965   Commit
## 78  1977 -0.562343375 -0.066715250 -0.3951105   Commit
## 79  1978 -0.504444125 -0.139228750 -0.3734740   Commit
## 80  1979 -0.637646250 -0.176158750 -0.3765105   Commit
## 81  1980 -0.502781000 -0.046661125 -0.3642275   Commit
## 82  1981 -0.466999125 -0.135333875 -0.2705840   Commit
## 83  1982 -0.509116750 -0.189140500 -0.3564000   Commit
## 84  1983 -0.766330625  0.030433875 -0.4393920   Commit
## 85  1984 -0.653133875 -0.095309625 -0.4128415   Commit
## 86  1985 -0.543289500 -0.130748750 -0.3259125   Commit
## 87  1986 -0.458358625  0.048122000 -0.2993620   Commit
## 88  1987 -0.397129375  0.005134875 -0.2578585   Commit
## 89  1988 -0.399433375 -0.060916500 -0.2139130   Commit
## 90  1989 -0.295498125  0.082835875 -0.1778110   Commit
## 91  1990 -0.257717125  0.129336875 -0.1377560   Commit
## 92  1991 -0.486668250  0.024417875 -0.1688845   Commit
## 93  1992 -0.708149375  0.098747375 -0.3533785   Commit
## 94  1993 -0.535393000  0.173145500 -0.3115085   Commit
## 95  1994 -0.444458125  0.047760500 -0.2082365   Commit
## 96  1995 -0.373440125  0.085472500 -0.1648100   Commit
## 97  1996 -0.284836125  0.135532375 -0.1150815   Commit
## 98  1997 -0.293915125  0.158123000 -0.0825195   Commit
## 99  1998 -0.323463375  0.167675000 -0.0485385   Commit
## 100 1999 -0.245430125  0.194270750 -0.0134735   Commit
## 101 2000  0.000000000  0.000000000  0.0000000   Commit
## 102 2001 -0.216324250  0.196945375  0.0259555   Commit
## 103 2002 -0.237019000  0.303623625  0.0448150   Commit
## 104 2003 -0.249313250  0.244121875  0.0062255   Commit
## 105 2004 -0.211814875  0.248817750  0.0765230   Commit
## 106 2005 -0.126152250  0.275547125  0.0290370   Commit
## 107 2006 -0.092754375  0.269966625  0.0913695   Commit
## 108 2007 -0.088218625  0.347404875  0.0893855   Commit
## 109 2008 -0.116592375  0.390438625  0.1025695   Commit
## 110 2009 -0.177215500  0.395203125  0.1079105   Commit
## 111 2010 -0.088180625  0.324150500  0.0995635   Commit
## 112 2011 -0.026135000  0.358867750  0.1104280   Commit
## 113 2012 -0.112205875  0.314289250  0.1488495   Commit
## 114 2013 -0.123150125  0.301594250  0.1033785   Commit
## 115 2014 -0.161903500  0.367435625  0.1239015   Commit
## 116 2015 -0.034851375  0.284316875  0.1301725   Commit
## 117 2016 -0.124240250  0.343258125  0.0743255   Commit
## 118 2017 -0.089939000  0.332908500  0.1159060   Commit
## 119 2018 -0.058059250  0.324287750  0.1636960   Commit
## 120 2019 -0.002475625  0.401958250  0.1693575   Commit
## 121 2020 -0.016868500  0.370491125  0.1702580   Commit
## 122 2021  0.025550750  0.242080500  0.1352385   Commit
## 123 2022  0.020439250  0.302448000  0.1544495   Commit
## 124 2023 -0.172096375  0.396343000  0.1418610   Commit
## 125 2024 -0.053779750  0.314403750  0.1746065   Commit
## 126 2025  0.015018375  0.455181000  0.1550140   Commit
## 127 2026  0.035854125  0.371265250  0.1564020   Commit
## 128 2027  0.067493500  0.363460500  0.1752320   Commit
## 129 2028  0.003769125  0.440834375  0.1254420   Commit
## 130 2029 -0.028446250  0.376503250  0.1681370   Commit
## 131 2030  0.018447625  0.376842250  0.2035675   Commit
## 132 2031  0.013187125  0.463680875  0.1693875   Commit
## 133 2032 -0.038101500  0.490909500  0.1987610   Commit
## 134 2033 -0.000164250  0.411972000  0.2200620   Commit
## 135 2034 -0.098846750  0.396091875  0.1984410   Commit
## 136 2035 -0.063724250  0.453400000  0.1641995   Commit
## 137 2036 -0.033718000  0.322300000  0.2116090   Commit
## 138 2037  0.020663750  0.400474875  0.1873475   Commit
## 139 2038  0.038002125  0.532165875  0.2256925   Commit
## 140 2039 -0.005287000  0.516315625  0.2202305   Commit
## 141 2040 -0.029907375  0.451000125  0.2201690   Commit
## 142 2041  0.072551625  0.537960375  0.2109535   Commit
## 143 2042  0.075789875  0.391475375  0.2392735   Commit
## 144 2043 -0.089897125  0.408729625  0.2456820   Commit
## 145 2044  0.042114125  0.609184500  0.2476655   Commit
## 146 2045  0.007511625  0.469570500  0.2126160   Commit
## 147 2046 -0.014164375  0.398376875  0.1999820   Commit
## 148 2047 -0.037910125  0.533169125  0.1933290   Commit
## 149 2048  0.027950625  0.415035125  0.2716220   Commit
## 150 2049 -0.038723000  0.454483125  0.2111665   Commit
## 151 2050  0.021080375  0.533733250  0.2789615   Commit
## 152 2051 -0.073036375  0.543571375  0.2676700   Commit
## 153 2052  0.006805625  0.368183000  0.1946715   Commit
## 154 2053 -0.124138125  0.451400875  0.1600645   Commit
## 155 2054  0.030971375  0.443607125  0.1651310   Commit
## 156 2055 -0.034481125  0.573887375  0.2308350   Commit
## 157 2056  0.043335125  0.609909250  0.2689215   Commit
## 158 2057  0.100867750  0.485283125  0.2401275   Commit
## 159 2058  0.111210000  0.439216875  0.2295375   Commit
## 160 2059 -0.018341500  0.631523375  0.2752840   Commit
## 161 2060  0.036247750  0.445488500  0.2796330   Commit
## 162 2061  0.059135750  0.503380125  0.2607880   Commit
## 163 2062  0.038227125  0.586025250  0.2281345   Commit
## 164 2063  0.044937375  0.549988000  0.2742460   Commit
## 165 2064  0.012825250  0.489166250  0.3112640   Commit
## 166 2065  0.112942000  0.604816750  0.2793885   Commit
## 167 2066  0.121654625  0.545212375  0.3038020   Commit
## 168 2067  0.101112125  0.551350000  0.2495570   Commit
## 169 2068 -0.090683125  0.573303750  0.2514035   Commit
## 170 2069 -0.006008500  0.543625125  0.2754820   Commit
## 171 2070  0.022937625  0.578186750  0.2775725   Commit
## 172 2071  0.106239625  0.681061000  0.3272855   Commit
## 173 2072 -0.037574250  0.633762625  0.2354885   Commit
## 174 2073  0.053878875  0.624172250  0.2157135   Commit
## 175 2074  0.053298375  0.792842875  0.2442785   Commit
## 176 2075  0.098263125  0.697048500  0.2864535   Commit
## 177 2076  0.099484000  0.551697375  0.2964935   Commit
## 178 2077  0.172993250  0.603584250  0.2826840   Commit
## 179 2078 -0.027176125  0.725315375  0.2774350   Commit
## 180 2079  0.024803000  0.552688125  0.2804715   Commit
## 181 2080  0.106304375  0.546497000  0.3190310   Commit
## 182 2081 -0.013778375  0.708172125  0.3018800   Commit
## 183 2082 -0.092785125  0.571266250  0.3334655   Commit
## 184 2083  0.102847875  0.586235125  0.2617190   Commit
## 185 2084  0.210109625  0.839435500  0.3128660   Commit
## 186 2085  0.090896500  0.674656125  0.3426360   Commit
## 187 2086 -0.023658625  0.647678625  0.3244935   Commit
## 188 2087  0.038921375  0.799152875  0.3571620   Commit
## 189 2088  0.096488625  0.715801375  0.2866365   Commit
## 190 2089  0.128582250  0.566436625  0.3095550   Commit
## 191 2090  0.159221750  0.709640500  0.3041990   Commit
## 192 2091  0.154068000  0.737072000  0.3208315   Commit
## 193 2092  0.059707375  0.671592375  0.3141480   Commit
## 194 2093  0.055839875  0.778846875  0.3136905   Commit
## 195 2094  0.119873125  0.655952500  0.3393705   Commit
## 196 2095  0.121528500  0.659046625  0.2920835   Commit
## 197 2096  0.098434750  0.960342375  0.3164370   Commit
## 198 2097  0.094574250  0.771469000  0.3477330   Commit
## 199 2098  0.104061125  0.593292750  0.2997135   Commit
## 200 2099  0.043873000  0.746765375  0.3472745   Commit
## 201 1900 -1.297195500 -0.283067500 -0.7284240       b1
## 202 1901 -1.331283500 -0.310717000 -0.8175970       b1
## 203 1902 -1.277878000 -0.365369500 -0.7728880       b1
## 204 1903 -1.448410500 -0.423019000 -0.9790950       b1
## 205 1904 -1.477844500 -0.325177500 -0.9905090       b1
## 206 1905 -1.275238500 -0.345840000 -0.8782960       b1
## 207 1906 -1.273788500 -0.408512000 -0.8261110       b1
## 208 1907 -1.276473500 -0.480637500 -0.8161620       b1
## 209 1908 -1.389434500 -0.314793500 -0.7226870       b1
## 210 1909 -1.352035500 -0.287454000 -0.7362370       b1
## 211 1910 -1.262969500 -0.395107500 -0.7779850       b1
## 212 1911 -1.307220500 -0.438762000 -0.7831420       b1
## 213 1912 -1.278823500 -0.349413500 -0.7838750       b1
## 214 1913 -1.238891500 -0.447071500 -0.8337710       b1
## 215 1914 -1.279190000 -0.393228500 -0.8625490       b1
## 216 1915 -1.211807000 -0.288387500 -0.8116450       b1
## 217 1916 -1.183974500 -0.284536000 -0.6701050       b1
## 218 1917 -1.338272000 -0.390187000 -0.6769110       b1
## 219 1918 -1.263382000 -0.339332500 -0.7098390       b1
## 220 1919 -1.170486000 -0.301997500 -0.6908260       b1
## 221 1920 -1.243072000 -0.381513000 -0.7127990       b1
## 222 1921 -1.304153000 -0.309303000 -0.6672360       b1
## 223 1922 -1.269882000 -0.263469000 -0.6930240       b1
## 224 1923 -1.247650500 -0.298612500 -0.6046750       b1
## 225 1924 -1.159957500 -0.305267500 -0.6706240       b1
## 226 1925 -1.182022000 -0.371415000 -0.7034610       b1
## 227 1926 -1.162307500 -0.268196000 -0.6736140       b1
## 228 1927 -1.178207500 -0.283729500 -0.5917670       b1
## 229 1928 -1.109100000 -0.312381500 -0.6336370       b1
## 230 1929 -1.141540500 -0.254038000 -0.6887820       b1
## 231 1930 -1.306991500 -0.210180500 -0.6560060       b1
## 232 1931 -1.253082000 -0.205848500 -0.7214050       b1
## 233 1932 -1.156158000 -0.200512500 -0.6681520       b1
## 234 1933 -1.130417000 -0.284662000 -0.7159120       b1
## 235 1934 -1.209366000 -0.340312000 -0.6409300       b1
## 236 1935 -1.087646000 -0.337970000 -0.6388860       b1
## 237 1936 -1.160827000 -0.336621500 -0.5940250       b1
## 238 1937 -1.158401500 -0.224274000 -0.6183780       b1
## 239 1938 -1.239304000 -0.131921500 -0.6279600       b1
## 240 1939 -1.068328500 -0.224082500 -0.6365360       b1
## 241 1940 -1.070495500 -0.262152500 -0.6516420       b1
## 242 1941 -1.078139500 -0.178899500 -0.6151130       b1
## 243 1942 -1.136505500 -0.242053500 -0.5783080       b1
## 244 1943 -1.040191500 -0.239195000 -0.5883790       b1
## 245 1944 -1.051788000 -0.124852500 -0.6427920       b1
## 246 1945 -1.031814000 -0.225500000 -0.5813900       b1
## 247 1946 -1.027969500 -0.327585000 -0.6478880       b1
## 248 1947 -1.064651000 -0.298087000 -0.6639710       b1
## 249 1948 -1.070327000 -0.236471000 -0.5785830       b1
## 250 1949 -1.138259500 -0.304627000 -0.5600280       b1
## 251 1950 -1.063964500 -0.266276000 -0.5667730       b1
## 252 1951 -0.972305000 -0.236933000 -0.5870980       b1
## 253 1952 -1.063538000 -0.237087000 -0.6023250       b1
## 254 1953 -0.998626500 -0.239509500 -0.5563050       b1
## 255 1954 -1.054077500 -0.295387000 -0.5396730       b1
## 256 1955 -1.104507500 -0.251800500 -0.5324100       b1
## 257 1956 -0.998000500 -0.186447500 -0.5041200       b1
## 258 1957 -1.003845500 -0.123366000 -0.5265200       b1
## 259 1958 -0.936264000 -0.071522000 -0.5610960       b1
## 260 1959 -0.877075000 -0.168676500 -0.5232240       b1
## 261 1960 -0.995803500 -0.195317000 -0.5310360       b1
## 262 1961 -0.991485000 -0.127980000 -0.5245060       b1
## 263 1962 -0.921463000 -0.194623000 -0.5852050       b1
## 264 1963 -0.938049000 -0.267777500 -0.5793160       b1
## 265 1964 -0.915970000 -0.205427500 -0.7159420       b1
## 266 1965 -0.915726000 -0.320096000 -0.7159120       b1
## 267 1966 -0.920120500 -0.201253000 -0.6865840       b1
## 268 1967 -0.811859000 -0.234900500 -0.5902100       b1
## 269 1968 -0.782028500 -0.287067000 -0.5478210       b1
## 270 1969 -0.963516500 -0.168208000 -0.6062010       b1
## 271 1970 -0.806182500 -0.267514500 -0.5605170       b1
## 272 1971 -0.813797000 -0.264556500 -0.5646670       b1
## 273 1972 -0.718750000 -0.186672000 -0.5383300       b1
## 274 1973 -0.776596000 -0.200785500 -0.5182190       b1
## 275 1974 -0.712143000 -0.276995000 -0.5148620       b1
## 276 1975 -0.700012500 -0.233383000 -0.5243530       b1
## 277 1976 -0.798370500 -0.251785000 -0.4832460       b1
## 278 1977 -0.626129000 -0.175697000 -0.4244990       b1
## 279 1978 -0.612198000 -0.248497000 -0.3825070       b1
## 280 1979 -0.651367500 -0.148753500 -0.4542240       b1
## 281 1980 -0.612610000 -0.090015000 -0.3727720       b1
## 282 1981 -0.532394500 -0.144555000 -0.3412170       b1
## 283 1982 -0.615127500 -0.111219500 -0.3736270       b1
## 284 1983 -0.767914000 -0.089523500 -0.4470220       b1
## 285 1984 -0.649124500 -0.088533000 -0.4121400       b1
## 286 1985 -0.557068500 -0.138190500 -0.3414920       b1
## 287 1986 -0.543594000 -0.071838500 -0.3103020       b1
## 288 1987 -0.455612500 -0.033428500 -0.2474370       b1
## 289 1988 -0.482437000 -0.040792000 -0.2328190       b1
## 290 1989 -0.494369500 -0.047298000 -0.1837160       b1
## 291 1990 -0.379379500  0.035781500 -0.1526490       b1
## 292 1991 -0.469284500  0.004879500 -0.1897580       b1
## 293 1992 -0.702835500  0.014389000 -0.3281250       b1
## 294 1993 -0.563034500  0.076294000 -0.3271790       b1
## 295 1994 -0.443176500  0.120422000 -0.2421870       b1
## 296 1995 -0.372238500  0.085770000 -0.1835630       b1
## 297 1996 -0.290009000  0.073129500 -0.1280820       b1
## 298 1997 -0.332596000  0.185640500 -0.1023250       b1
## 299 1998 -0.330368000  0.166821000 -0.0513920       b1
## 300 1999 -0.352524000  0.082931500  0.0009760       b1
## 301 2000  0.000000000  0.000000000  0.0000000       b1
## 302 2001 -0.340027500  0.218032500  0.0147100       b1
## 303 2002 -0.213531500  0.160720500  0.0249030       b1
## 304 2003 -0.183166500  0.229843000  0.0671380       b1
## 305 2004 -0.122315000  0.495635500  0.0749820       b1
## 306 2005 -0.128387500  0.246732500  0.1062320       b1
## 307 2006 -0.110809500  0.316849000  0.1063240       b1
## 308 2007 -0.148559500  0.384995000  0.1278990       b1
## 309 2008 -0.123612000  0.442996000  0.1419980       b1
## 310 2009 -0.143265000  0.427502500  0.1159670       b1
## 311 2010 -0.080002000  0.519489500  0.1205140       b1
## 312 2011  0.033447000  0.555343500  0.2302860       b1
## 313 2012 -0.048386000  0.544502500  0.2536620       b1
## 314 2013 -0.111099500  0.491498500  0.2468570       b1
## 315 2014 -0.003189000  0.627497500  0.2959900       b1
## 316 2015  0.047195500  0.625501500  0.3007510       b1
## 317 2016  0.092987000  0.675992000  0.3363950       b1
## 318 2017  0.068115000  0.733001000  0.3356630       b1
## 319 2018  0.061950500  0.703994000  0.3969110       b1
## 320 2019  0.074096500  0.749990000  0.4126590       b1
## 321 2020  0.187515000  0.742502000  0.3952640       b1
## 322 2021  0.176315500  0.865371500  0.4052740       b1
## 323 2022  0.177917000  0.863616500  0.3735350       b1
## 324 2023  0.215713500  0.826494500  0.4420470       b1
## 325 2024  0.221679500  0.952497500  0.4662170       b1
## 326 2025  0.099029500  0.909001000  0.4543150       b1
## 327 2026  0.264816000  0.892491500  0.4349980       b1
## 328 2027  0.286575500  0.937491000  0.4801940       b1
## 329 2028  0.269867000  0.839233000  0.4895940       b1
## 330 2029  0.276581000  0.952941500  0.5379640       b1
## 331 2030  0.319122000  1.023991500  0.4735110       b1
## 332 2031  0.268173000  1.090003000  0.5350030       b1
## 333 2032  0.219208000  1.092621000  0.5941470       b1
## 334 2033  0.314925500  1.027990000  0.5569150       b1
## 335 2034  0.378158500  1.015494000  0.5913690       b1
## 336 2035  0.380447500  1.041998500  0.6231990       b1
## 337 2036  0.326599000  1.049999500  0.5952760       b1
## 338 2037  0.406219500  1.107742500  0.6355890       b1
## 339 2038  0.440216000  1.180496000  0.7034000       b1
## 340 2039  0.454864500  1.188991500  0.6896970       b1
## 341 2040  0.419220000  1.234909000  0.6869810       b1
## 342 2041  0.470657000  1.224624500  0.7760320       b1
## 343 2042  0.559829500  1.267997000  0.7025150       b1
## 344 2043  0.510376000  1.330582000  0.7868650       b1
## 345 2044  0.545425000  1.225495000  0.8042600       b1
## 346 2045  0.536102000  1.262024000  0.8049630       b1
## 347 2046  0.563445500  1.341497000  0.8501590       b1
## 348 2047  0.509597500  1.495742500  0.8618470       b1
## 349 2048  0.535949500  1.485091500  0.8535150       b1
## 350 2049  0.571396000  1.514923000  0.9040530       b1
## 351 2050  0.610305500  1.526138500  0.8755800       b1
## 352 2051  0.663345500  1.492003000  0.8725580       b1
## 353 2052  0.705078000  1.545959000  0.9431160       b1
## 354 2053  0.618271000  1.562316500  0.9681710       b1
## 355 2054  0.636825000  1.641022000  0.9375910       b1
## 356 2055  0.531265000  1.571746500  1.0061950       b1
## 357 2056  0.668533500  1.651855000  1.0009460       b1
## 358 2057  0.703415000  1.580688500  1.0762030       b1
## 359 2058  0.729965000  1.700042500  1.1091920       b1
## 360 2059  0.725052000  1.742386000  1.0872810       b1
## 361 2060  0.682480000  1.748565000  1.0822450       b1
## 362 2061  0.758880500  1.737579000  1.1254580       b1
## 363 2062  0.774872000  1.856414500  1.1366580       b1
## 364 2063  0.730484000  1.871276500  1.1612550       b1
## 365 2064  0.764297500  1.819244500  1.1943670       b1
## 366 2065  0.820175000  1.908981500  1.2074580       b1
## 367 2066  0.858612000  1.864807000  1.2515570       b1
## 368 2067  0.779144500  1.871933000  1.2267450       b1
## 369 2068  0.878936500  2.015502500  1.2917480       b1
## 370 2069  0.924911500  1.983840500  1.2634580       b1
## 371 2070  0.858215500  1.957595500  1.2864380       b1
## 372 2071  0.903106500  2.047531000  1.3500000       b1
## 373 2072  0.927383500  2.168380500  1.2755440       b1
## 374 2073  0.900894000  2.023239000  1.2590950       b1
## 375 2074  0.882095000  1.975479000  1.3168330       b1
## 376 2075  0.876205500  2.100921500  1.3956300       b1
## 377 2076  0.859054500  2.066772000  1.3810000       b1
## 378 2077  0.970901500  2.099105500  1.4061890       b1
## 379 2078  0.937393000  2.136947500  1.3690000       b1
## 380 2079  0.953613500  2.085311500  1.3828730       b1
## 381 2080  0.929214500  2.153137000  1.4238580       b1
## 382 2081  0.906570500  2.266006000  1.4192810       b1
## 383 2082  1.028931000  2.139831000  1.3927620       b1
## 384 2083  0.980026500  2.237182500  1.4248050       b1
## 385 2084  0.969635000  2.414031500  1.4349360       b1
## 386 2085  1.005218500  2.355880000  1.4433590       b1
## 387 2086  0.985336000  2.341720000  1.4037470       b1
## 388 2087  1.050155500  2.410568000  1.4747010       b1
## 389 2088  0.937042000  2.444412000  1.5268860       b1
## 390 2089  1.059646500  2.416259000  1.4618220       b1
## 391 2090  1.059250000  2.305602500  1.5109860       b1
## 392 2091  0.999038500  2.448943500  1.4980160       b1
## 393 2092  0.989456000  2.567306500  1.4063410       b1
## 394 2093  0.991562000  2.553161500  1.4488830       b1
## 395 2094  1.009674000  2.530990500  1.4577020       b1
## 396 2095  1.063263000  2.541320500  1.5630490       b1
## 397 2096  1.079376500  2.512176000  1.4714360       b1
## 398 2097  1.066909500  2.566024000  1.5180660       b1
## 399 2098  1.108566500  2.589370500  1.5130920       b1
## 400 2099  1.098175000  2.575225500  1.5792840       b1
## 401 1900 -1.297195500 -0.410553000 -0.7284240      a1b
## 402 1901 -1.331283500 -0.469284000 -0.8175970      a1b
## 403 1902 -1.277878000 -0.523483500 -0.7728880      a1b
## 404 1903 -1.444413000 -0.454590000 -0.9790950      a1b
## 405 1904 -1.473847000 -0.325363500 -0.9905090      a1b
## 406 1905 -1.271241000 -0.408997000 -0.8782960      a1b
## 407 1906 -1.268265000 -0.530807500 -0.8196110      a1b
## 408 1907 -1.276473500 -0.461212000 -0.8321530      a1b
## 409 1908 -1.389434500 -0.397018500 -0.7422180      a1b
## 410 1909 -1.352035500 -0.413025000 -0.7522280      a1b
## 411 1910 -1.262969500 -0.452026500 -0.7779850      a1b
## 412 1911 -1.307220500 -0.417297500 -0.7881780      a1b
## 413 1912 -1.278823500 -0.408997000 -0.7838750      a1b
## 414 1913 -1.234894000 -0.541046500 -0.8475340      a1b
## 415 1914 -1.270507500 -0.553039500 -0.8625490      a1b
## 416 1915 -1.211807000 -0.472565000 -0.8086540      a1b
## 417 1916 -1.183974500 -0.412842000 -0.6612860      a1b
## 418 1917 -1.338272000 -0.455032500 -0.6626280      a1b
## 419 1918 -1.263382000 -0.394226500 -0.7098390      a1b
## 420 1919 -1.170486000 -0.350433500 -0.6878350      a1b
## 421 1920 -1.243072000 -0.415649500 -0.6902470      a1b
## 422 1921 -1.304153000 -0.455841500 -0.6672360      a1b
## 423 1922 -1.269882000 -0.389557500 -0.7003480      a1b
## 424 1923 -1.247650500 -0.354248500 -0.6848140      a1b
## 425 1924 -1.159957500 -0.396469500 -0.6813960      a1b
## 426 1925 -1.182022000 -0.464157500 -0.7034610      a1b
## 427 1926 -1.162307500 -0.506821000 -0.6736140      a1b
## 428 1927 -1.178207500 -0.391083000 -0.6370850      a1b
## 429 1928 -1.099486500 -0.430878000 -0.6776430      a1b
## 430 1929 -1.123550000 -0.384109500 -0.6887820      a1b
## 431 1930 -1.306991500 -0.423157000 -0.6914980      a1b
## 432 1931 -1.253082000 -0.422577000 -0.7214050      a1b
## 433 1932 -1.156158000 -0.384491000 -0.6778260      a1b
## 434 1933 -1.130417000 -0.400299500 -0.7173770      a1b
## 435 1934 -1.209366000 -0.458664500 -0.6569210      a1b
## 436 1935 -1.087646000 -0.401214500 -0.6350710      a1b
## 437 1936 -1.160827000 -0.435227000 -0.6023560      a1b
## 438 1937 -1.140411000 -0.410614500 -0.6183780      a1b
## 439 1938 -1.221313500 -0.339813500 -0.5985110      a1b
## 440 1939 -1.068328500 -0.301026000 -0.6247560      a1b
## 441 1940 -1.070495500 -0.419647000 -0.6516420      a1b
## 442 1941 -1.078139500 -0.421035500 -0.5737300      a1b
## 443 1942 -1.118515000 -0.389221000 -0.5783080      a1b
## 444 1943 -1.040191500 -0.410263000 -0.6415400      a1b
## 445 1944 -1.051788000 -0.399963500 -0.6143800      a1b
## 446 1945 -1.031814000 -0.406753500 -0.5726010      a1b
## 447 1946 -1.027969500 -0.413253500 -0.6160890      a1b
## 448 1947 -1.064651000 -0.375397000 -0.6242370      a1b
## 449 1948 -1.070327000 -0.365036000 -0.5761720      a1b
## 450 1949 -1.138259500 -0.417266500 -0.5542300      a1b
## 451 1950 -1.062469000 -0.374832000 -0.5306700      a1b
## 452 1951 -0.972305000 -0.389969000 -0.5692440      a1b
## 453 1952 -1.063538000 -0.384155500 -0.6023250      a1b
## 454 1953 -0.998626500 -0.377151000 -0.5605170      a1b
## 455 1954 -1.036087000 -0.426193500 -0.5348510      a1b
## 456 1955 -1.086517000 -0.271011500 -0.5343930      a1b
## 457 1956 -0.996505000 -0.222534500 -0.5041200      a1b
## 458 1957 -0.985855000 -0.335663000 -0.4926760      a1b
## 459 1958 -0.931991500 -0.228653500 -0.5177920      a1b
## 460 1959 -0.874572500 -0.294616500 -0.5232240      a1b
## 461 1960 -0.995803500 -0.324249000 -0.5460210      a1b
## 462 1961 -0.991485000 -0.294403500 -0.5245060      a1b
## 463 1962 -0.921463000 -0.325378000 -0.5927120      a1b
## 464 1963 -0.938049000 -0.409180000 -0.6163020      a1b
## 465 1964 -0.911972500 -0.278625500 -0.7377010      a1b
## 466 1965 -0.906372000 -0.356979500 -0.7179570      a1b
## 467 1966 -0.902130000 -0.325562000 -0.6865840      a1b
## 468 1967 -0.811859000 -0.330429000 -0.5902100      a1b
## 469 1968 -0.764038000 -0.395889000 -0.5951840      a1b
## 470 1969 -0.945526000 -0.399368500 -0.6028140      a1b
## 471 1970 -0.806182500 -0.329498000 -0.5706180      a1b
## 472 1971 -0.813797000 -0.246277000 -0.5835880      a1b
## 473 1972 -0.718750000 -0.207763500 -0.5675660      a1b
## 474 1973 -0.758605500 -0.248931500 -0.5182190      a1b
## 475 1974 -0.712143000 -0.357467500 -0.5148620      a1b
## 476 1975 -0.682022000 -0.257400500 -0.5403440      a1b
## 477 1976 -0.780380000 -0.236587500 -0.5031430      a1b
## 478 1977 -0.626129000 -0.197555500 -0.4288630      a1b
## 479 1978 -0.594207500 -0.214889500 -0.3825070      a1b
## 480 1979 -0.651367500 -0.182693500 -0.4389340      a1b
## 481 1980 -0.594619500 -0.110107500 -0.3727720      a1b
## 482 1981 -0.510406500 -0.202606500 -0.2943420      a1b
## 483 1982 -0.593139500 -0.141281500 -0.4178770      a1b
## 484 1983 -0.757522500 -0.041672000 -0.4670100      a1b
## 485 1984 -0.649124500 -0.144928000 -0.4121400      a1b
## 486 1985 -0.557068500 -0.183472000 -0.3414920      a1b
## 487 1986 -0.525603500 -0.090301500 -0.3107910      a1b
## 488 1987 -0.444260000 -0.089676000 -0.2682800      a1b
## 489 1988 -0.480941500 -0.076690500 -0.2336120      a1b
## 490 1989 -0.476379000 -0.019378500 -0.1837160      a1b
## 491 1990 -0.332565500 -0.013214500 -0.1485590      a1b
## 492 1991 -0.466538000  0.007400500 -0.1897580      a1b
## 493 1992 -0.702835500 -0.025116000 -0.3862000      a1b
## 494 1993 -0.563034500  0.121567000 -0.3431700      a1b
## 495 1994 -0.443176500  0.110733000 -0.2421870      a1b
## 496 1995 -0.372238500  0.089523000 -0.1805720      a1b
## 497 1996 -0.285370500  0.078262500 -0.1557920      a1b
## 498 1997 -0.331100500  0.136306500 -0.1023250      a1b
## 499 1998 -0.330368000  0.118423000 -0.0513920      a1b
## 500 1999 -0.334533500  0.077820000  0.0017700      a1b
## 501 2000  0.000000000  0.000000000  0.0000000      a1b
## 502 2001 -0.227783000  0.192703500  0.0107120      a1b
## 503 2002 -0.143921000  0.146408000  0.0510250      a1b
## 504 2003 -0.159042500  0.231720000  0.0870670      a1b
## 505 2004 -0.140976500  0.301300000  0.0982060      a1b
## 506 2005 -0.199127500  0.374282500  0.1080930      a1b
## 507 2006 -0.135132000  0.333236500  0.1230160      a1b
## 508 2007 -0.172806000  0.373062000  0.1646420      a1b
## 509 2008 -0.029694000  0.427948000  0.1955870      a1b
## 510 2009 -0.045791500  0.440170500  0.1457830      a1b
## 511 2010 -0.071639500  0.373016000  0.1785280      a1b
## 512 2011 -0.095413500  0.449554000  0.1972350      a1b
## 513 2012  0.074218500  0.473037500  0.2989810      a1b
## 514 2013  0.007843000  0.478927500  0.2553710      a1b
## 515 2014  0.058700500  0.515792500  0.2729800      a1b
## 516 2015  0.060897500  0.502701000  0.3245240      a1b
## 517 2016  0.066406500  0.611023000  0.2702330      a1b
## 518 2017  0.069763000  0.680450500  0.2942810      a1b
## 519 2018  0.062881500  0.739120500  0.3495480      a1b
## 520 2019  0.094818000  0.681106000  0.3630370      a1b
## 521 2020  0.169540000  0.685959000  0.4573970      a1b
## 522 2021  0.132385000  0.705444000  0.4205320      a1b
## 523 2022  0.205001500  0.765808000  0.4559330      a1b
## 524 2023  0.266266000  0.733337000  0.4653930      a1b
## 525 2024  0.310959000  0.758300500  0.4776000      a1b
## 526 2025  0.179184000  0.800567500  0.4784850      a1b
## 527 2026  0.284820500  0.880279500  0.5528870      a1b
## 528 2027  0.370834500  0.913635000  0.5598450      a1b
## 529 2028  0.401520000  1.099594000  0.6037600      a1b
## 530 2029  0.415634500  1.180557000  0.6636350      a1b
## 531 2030  0.441330000  1.100677500  0.7137450      a1b
## 532 2031  0.467529000  1.096389500  0.6810920      a1b
## 533 2032  0.507278500  1.121124000  0.7782290      a1b
## 534 2033  0.538497500  1.241852000  0.7935180      a1b
## 535 2034  0.444321000  1.222793000  0.7682500      a1b
## 536 2035  0.522827500  1.247695500  0.8517150      a1b
## 537 2036  0.605102500  1.318512000  0.7957460      a1b
## 538 2037  0.571884000  1.436141500  0.9034120      a1b
## 539 2038  0.598801000  1.432586000  0.9603890      a1b
## 540 2039  0.740798500  1.519714000  0.9836120      a1b
## 541 2040  0.724594000  1.539001000  0.9958190      a1b
## 542 2041  0.689544500  1.511474500  1.0708930      a1b
## 543 2042  0.654266000  1.515686000  1.0471190      a1b
## 544 2043  0.743591500  1.565429500  1.1115120      a1b
## 545 2044  0.742767500  1.578308000  1.1298830      a1b
## 546 2045  0.815536500  1.624740500  1.2060860      a1b
## 547 2046  0.833664000  1.709396000  1.1994930      a1b
## 548 2047  0.918182500  1.776153500  1.1933600      a1b
## 549 2048  0.941223500  1.950591500  1.2775260      a1b
## 550 2049  0.919738500  1.866043000  1.3155510      a1b
## 551 2050  0.980636500  1.880218500  1.3030090      a1b
## 552 2051  1.006302000  1.803848500  1.3500980      a1b
## 553 2052  0.999329000  1.910583500  1.3374640      a1b
## 554 2053  1.053406000  1.983322000  1.4701540      a1b
## 555 2054  1.107925500  1.998672000  1.4513860      a1b
## 556 2055  1.035873500  2.049636500  1.4661560      a1b
## 557 2056  1.066421500  2.056961000  1.4499520      a1b
## 558 2057  1.130936000  2.238693000  1.5195620      a1b
## 559 2058  1.136780000  2.218627500  1.5281680      a1b
## 560 2059  1.187500500  2.210067500  1.5716550      a1b
## 561 2060  1.170517000  2.272491000  1.5831600      a1b
## 562 2061  1.213547000  2.479461500  1.5916740      a1b
## 563 2062  1.263367000  2.453384500  1.6196600      a1b
## 564 2063  1.273666500  2.416839500  1.6933590      a1b
## 565 2064  1.249023500  2.503615500  1.7957150      a1b
## 566 2065  1.325210500  2.489959500  1.7267150      a1b
## 567 2066  1.312805000  2.529693500  1.7853700      a1b
## 568 2067  1.317215000  2.609924500  1.8177490      a1b
## 569 2068  1.337387500  2.698150500  1.8624580      a1b
## 570 2069  1.361847000  2.696365000  1.9465940      a1b
## 571 2070  1.399338000  2.745193000  1.9365240      a1b
## 572 2071  1.429443500  2.790039000  1.9376530      a1b
## 573 2072  1.458404500  2.758880500  1.9891060      a1b
## 574 2073  1.424621500  2.895233000  2.0070190      a1b
## 575 2074  1.494827500  2.831573000  1.9418030      a1b
## 576 2075  1.521942000  2.921416500  2.0854190      a1b
## 577 2076  1.559082500  3.037185500  2.0902090      a1b
## 578 2077  1.511703500  2.987640500  2.0569460      a1b
## 579 2078  1.585159500  2.915954000  2.0747980      a1b
## 580 2079  1.576950500  3.002838000  2.1006470      a1b
## 581 2080  1.555588000  3.175140000  2.1614380      a1b
## 582 2081  1.631714000  3.128493500  2.1965640      a1b
## 583 2082  1.632843000  3.073348500  2.1670530      a1b
## 584 2083  1.654480000  3.092193000  2.3289490      a1b
## 585 2084  1.623001000  3.201538000  2.2596740      a1b
## 586 2085  1.667480500  3.319396500  2.2344660      a1b
## 587 2086  1.641937000  3.296218000  2.1319890      a1b
## 588 2087  1.713928500  3.302490000  2.3037110      a1b
## 589 2088  1.752609500  3.382903500  2.2609250      a1b
## 590 2089  1.742721500  3.467757500  2.2156980      a1b
## 591 2090  1.786850000  3.476608000  2.3633120      a1b
## 592 2091  1.774978500  3.528945500  2.2382810      a1b
## 593 2092  1.765304500  3.552291500  2.2810970      a1b
## 594 2093  1.737289500  3.502838000  2.3968810      a1b
## 595 2094  1.796768000  3.540985000  2.4260560      a1b
## 596 2095  1.804733500  3.703826500  2.3449710      a1b
## 597 2096  1.803711000  3.667175000  2.3884580      a1b
## 598 2097  1.813202000  3.675018000  2.3883980      a1b
## 599 2098  1.865661500  3.729263500  2.3716430      a1b
## 600 2099  1.883636500  3.690215500  2.5040280      a1b
## 601 1900 -1.260944000 -0.413073200 -0.7284240       a2
## 602 1901 -1.282025000 -0.443859800 -0.8175970       a2
## 603 1902 -1.285516400 -0.491033800 -0.7739560       a2
## 604 1903 -1.461755600 -0.474737400 -0.9790950       a2
## 605 1904 -1.499365400 -0.314965600 -1.0227060       a2
## 606 1905 -1.289892800 -0.349536200 -0.8940430       a2
## 607 1906 -1.215917600 -0.560204800 -0.8318790       a2
## 608 1907 -1.226849200 -0.499126600 -0.8142400       a2
## 609 1908 -1.389666600 -0.334734800 -0.7422180       a2
## 610 1909 -1.355151400 -0.319372200 -0.8729860       a2
## 611 1910 -1.215978800 -0.408666800 -0.7779850       a2
## 612 1911 -1.305749400 -0.424346600 -0.7831420       a2
## 613 1912 -1.276403800 -0.407366800 -0.8028870       a2
## 614 1913 -1.198657400 -0.506268400 -0.8475340       a2
## 615 1914 -1.197265600 -0.515325600 -0.8625490       a2
## 616 1915 -1.169409000 -0.418609600 -0.8198550       a2
## 617 1916 -1.141784000 -0.388958600 -0.7464910       a2
## 618 1917 -1.301074200 -0.466967400 -0.6769110       a2
## 619 1918 -1.238190000 -0.404718000 -0.7098390       a2
## 620 1919 -1.099078600 -0.361724400 -0.7596130       a2
## 621 1920 -1.230157000 -0.421123800 -0.6887510       a2
## 622 1921 -1.225653000 -0.446997000 -0.6672360       a2
## 623 1922 -1.082451800 -0.348266600 -0.6930240       a2
## 624 1923 -1.030590600 -0.343847600 -0.6046750       a2
## 625 1924 -1.117529200 -0.380048000 -0.6706240       a2
## 626 1925 -1.130407800 -0.448163000 -0.7034610       a2
## 627 1926 -1.169305200 -0.449096800 -0.6736140       a2
## 628 1927 -1.154785400 -0.396362000 -0.5917670       a2
## 629 1928 -1.057201400 -0.471777200 -0.6228640       a2
## 630 1929 -1.126726800 -0.340905400 -0.6887820       a2
## 631 1930 -1.257855000 -0.369720400 -0.6448980       a2
## 632 1931 -1.238281200 -0.390844400 -0.7214050       a2
## 633 1932 -1.075512400 -0.342315200 -0.6681520       a2
## 634 1933 -1.027941400 -0.379388600 -0.7159120       a2
## 635 1934 -1.131018200 -0.419934200 -0.6259150       a2
## 636 1935 -1.024151200 -0.404363400 -0.6388860       a2
## 637 1936 -1.008898400 -0.492626400 -0.5790100       a2
## 638 1937 -1.075335800 -0.395520200 -0.6183780       a2
## 639 1938 -1.198492400 -0.337823200 -0.6279600       a2
## 640 1939 -1.030023200 -0.306457600 -0.6391900       a2
## 641 1940 -1.006402600 -0.417065000 -0.6516420       a2
## 642 1941 -1.072314000 -0.382390800 -0.5650940       a2
## 643 1942 -1.090838400 -0.387170000 -0.5922850       a2
## 644 1943 -0.977624200 -0.398327400 -0.5883790       a2
## 645 1944 -0.978113000 -0.349914400 -0.6427920       a2
## 646 1945 -0.919799400 -0.414806600 -0.5813900       a2
## 647 1946 -0.968109400 -0.413036800 -0.6478880       a2
## 648 1947 -0.971276400 -0.339154000 -0.6639710       a2
## 649 1948 -0.929442800 -0.324419800 -0.5785830       a2
## 650 1949 -1.001385200 -0.396594200 -0.5600280       a2
## 651 1950 -0.945868200 -0.329778600 -0.5639950       a2
## 652 1951 -0.884704400 -0.349951000 -0.5845030       a2
## 653 1952 -0.996661800 -0.348419400 -0.6023250       a2
## 654 1953 -0.896349800 -0.371001800 -0.5510250       a2
## 655 1954 -0.934680000 -0.398132200 -0.5367120       a2
## 656 1955 -0.976165400 -0.254662800 -0.5324100       a2
## 657 1956 -0.861706600 -0.189453400 -0.5041200       a2
## 658 1957 -0.964330800 -0.294079400 -0.5152890       a2
## 659 1958 -0.903301600 -0.181134200 -0.5610960       a2
## 660 1959 -0.883062400 -0.254766400 -0.5232240       a2
## 661 1960 -0.918652000 -0.289928600 -0.5310360       a2
## 662 1961 -0.832006600 -0.247717400 -0.5193790       a2
## 663 1962 -0.878161600 -0.317651200 -0.5573420       a2
## 664 1963 -0.931646800 -0.406763000 -0.5711670       a2
## 665 1964 -0.988910000 -0.290075200 -0.7159420       a2
## 666 1965 -0.903277200 -0.370165600 -0.7179570       a2
## 667 1966 -0.835675000 -0.315954600 -0.6865840       a2
## 668 1967 -0.796509000 -0.352758400 -0.5718690       a2
## 669 1968 -0.838885600 -0.383557200 -0.5784910       a2
## 670 1969 -0.949151800 -0.366345000 -0.5823670       a2
## 671 1970 -0.813299600 -0.371624400 -0.5605170       a2
## 672 1971 -0.784668400 -0.272674400 -0.5646670       a2
## 673 1972 -0.739550800 -0.213683400 -0.5693970       a2
## 674 1973 -0.752240000 -0.291460600 -0.5182190       a2
## 675 1974 -0.747754000 -0.339507800 -0.5190120       a2
## 676 1975 -0.737903600 -0.245983400 -0.5358890       a2
## 677 1976 -0.799011400 -0.237792400 -0.4832460       a2
## 678 1977 -0.671911600 -0.264111400 -0.4288630       a2
## 679 1978 -0.672705000 -0.264758000 -0.4242550       a2
## 680 1979 -0.723712600 -0.197662400 -0.4389340       a2
## 681 1980 -0.639031800 -0.148089400 -0.4009700       a2
## 682 1981 -0.625317800 -0.154913000 -0.2951050       a2
## 683 1982 -0.673968600 -0.154339600 -0.3736270       a2
## 684 1983 -0.764569000 -0.066668400 -0.4928280       a2
## 685 1984 -0.654651200 -0.106158200 -0.4200740       a2
## 686 1985 -0.555102600 -0.166015600 -0.3803400       a2
## 687 1986 -0.518457000 -0.105145000 -0.3141480       a2
## 688 1987 -0.486608800 -0.081872600 -0.2657160       a2
## 689 1988 -0.484729600 -0.082262800 -0.2231750       a2
## 690 1989 -0.518719400 -0.060919000 -0.1884460       a2
## 691 1990 -0.369977200  0.037121600 -0.1571960       a2
## 692 1991 -0.515534000  0.001813200 -0.1994020       a2
## 693 1992 -0.707086600 -0.023406800 -0.4136350       a2
## 694 1993 -0.553588600  0.082538200 -0.3458560       a2
## 695 1994 -0.444201800  0.105951400 -0.2532650       a2
## 696 1995 -0.373199800  0.080316400 -0.2057800       a2
## 697 1996 -0.321179200  0.065313600 -0.1597900       a2
## 698 1997 -0.334521800  0.123748800 -0.1142580       a2
## 699 1998 -0.334838800  0.110376000 -0.1045230       a2
## 700 1999 -0.335894600  0.089648800 -0.0219110       a2
## 701 2000  0.000000000  0.000000000  0.0000000       a2
## 702 2001 -0.228179800  0.274206600 -0.0149850       a2
## 703 2002 -0.204547600  0.239520400  0.0147400       a2
## 704 2003 -0.180633200  0.320776800 -0.0529170       a2
## 705 2004 -0.148889400  0.202514400  0.0570990       a2
## 706 2005 -0.124462800  0.365515200  0.0760800       a2
## 707 2006 -0.166973800  0.465203600  0.1304020       a2
## 708 2007 -0.133246200  0.411676000  0.1272580       a2
## 709 2008 -0.045386000  0.443799400  0.1376040       a2
## 710 2009 -0.147577200  0.383661000  0.1313480       a2
## 711 2010 -0.037469400  0.390533600  0.1738280       a2
## 712 2011 -0.006238200  0.474817400  0.1697080       a2
## 713 2012 -0.013446600  0.354803600  0.2207950       a2
## 714 2013 -0.043567200  0.336072200  0.2212830       a2
## 715 2014  0.071374600  0.405426400  0.2271420       a2
## 716 2015  0.064605800  0.452227800  0.2950740       a2
## 717 2016 -0.014416800  0.571526800  0.3557440       a2
## 718 2017  0.036895800  0.553503600  0.2387090       a2
## 719 2018  0.031902600  0.476031800  0.3217780       a2
## 720 2019  0.137732200  0.669976400  0.2983090       a2
## 721 2020  0.046166400  0.628155400  0.3509830       a2
## 722 2021  0.076324400  0.632513800  0.3815000       a2
## 723 2022  0.134545800  0.693305000  0.4022520       a2
## 724 2023  0.188756800  0.704010200  0.4583430       a2
## 725 2024  0.161425400  0.745251000  0.4335030       a2
## 726 2025  0.260095000  0.768957600  0.4960940       a2
## 727 2026  0.230541600  0.712061000  0.4812920       a2
## 728 2027  0.200176600  0.724225000  0.4661560       a2
## 729 2028  0.243567200  0.794946600  0.5004880       a2
## 730 2029  0.265960800  0.775366600  0.4911200       a2
## 731 2030  0.372827000  0.779346400  0.5257260       a2
## 732 2031  0.236352200  0.857464600  0.5554500       a2
## 733 2032  0.325500000  0.856610200  0.6508180       a2
## 734 2033  0.471887000  0.874011600  0.6956480       a2
## 735 2034  0.498900800  0.883826400  0.7573850       a2
## 736 2035  0.373803200  1.000977200  0.6718140       a2
## 737 2036  0.435253600  1.042444200  0.7798760       a2
## 738 2037  0.567669600  0.963019600  0.7327880       a2
## 739 2038  0.554724000  0.995270200  0.8056030       a2
## 740 2039  0.544250200  1.048682200  0.7614440       a2
## 741 2040  0.584923800  1.088757200  0.8119810       a2
## 742 2041  0.693835800  1.128949400  0.9031370       a2
## 743 2042  0.689617800  1.148285200  0.9159240       a2
## 744 2043  0.595257200  1.200977000  0.9988100       a2
## 745 2044  0.739715600  1.187414800  0.9462580       a2
## 746 2045  0.756243600  1.254596200  1.0079350       a2
## 747 2046  0.741723400  1.329450000  0.9939880       a2
## 748 2047  0.811914200  1.468933600  0.9733590       a2
## 749 2048  0.869366400  1.458368400  1.0732720       a2
## 750 2049  0.813928200  1.414899200  1.1745910       a2
## 751 2050  0.828662000  1.427973200  1.2025750       a2
## 752 2051  0.888342200  1.475378800  1.2282110       a2
## 753 2052  0.965471800  1.567266600  1.2789610       a2
## 754 2053  1.019897200  1.637982000  1.3059690       a2
## 755 2054  1.066168000  1.566571000  1.3706050       a2
## 756 2055  0.987158200  1.704303200  1.3636170       a2
## 757 2056  1.026885800  1.724035400  1.4086920       a2
## 758 2057  1.162524600  1.792926600  1.4632270       a2
## 759 2058  1.165454200  1.768072800  1.4641120       a2
## 760 2059  1.155383200  1.871228400  1.5494080       a2
## 761 2060  1.098858200  1.978192600  1.6213080       a2
## 762 2061  1.212439000  1.912054800  1.6961670       a2
## 763 2062  1.292736800  1.935028400  1.6678770       a2
## 764 2063  1.351928600  2.188836400  1.6743780       a2
## 765 2064  1.337548600  2.093457400  1.7263800       a2
## 766 2065  1.364429000  2.176019400  1.7594910       a2
## 767 2066  1.426275800  2.256176800  1.7978520       a2
## 768 2067  1.445672600  2.299017400  1.9097290       a2
## 769 2068  1.475354400  2.216894600  1.9621270       a2
## 770 2069  1.469733000  2.327514800  1.9309690       a2
## 771 2070  1.543506200  2.308624600  2.1064460       a2
## 772 2071  1.591369600  2.368994600  2.0675360       a2
## 773 2072  1.613641400  2.562451800  2.1538080       a2
## 774 2073  1.648718200  2.486963000  2.1290280       a2
## 775 2074  1.650976800  2.548016600  2.1425790       a2
## 776 2075  1.693475400  2.789093200  2.3076480       a2
## 777 2076  1.696667800  2.705847200  2.2788390       a2
## 778 2077  1.793035800  2.756921400  2.3418580       a2
## 779 2078  1.821502800  2.701093000  2.3728630       a2
## 780 2079  1.791577400  2.890136600  2.4461670       a2
## 781 2080  1.847155800  2.969568200  2.5246280       a2
## 782 2081  1.913745200  3.042926400  2.5237430       a2
## 783 2082  1.966918600  3.065472400  2.5729060       a2
## 784 2083  1.940497200  3.126074200  2.6613160       a2
## 785 2084  1.987085400  3.217285200  2.7265320       a2
## 786 2085  2.087042200  3.211926200  2.7213140       a2
## 787 2086  2.105218800  3.173956400  2.7914130       a2
## 788 2087  2.123620800  3.218670400  2.7429200       a2
## 789 2088  2.152380600  3.275634600  2.7221980       a2
## 790 2089  2.207800800  3.484905800  2.8735050       a2
## 791 2090  2.185162600  3.476220600  2.8899540       a2
## 792 2091  2.212127800  3.584191600  2.8329780       a2
## 793 2092  2.265704400  3.598578000  3.0452880       a2
## 794 2093  2.314471400  3.612701600  3.0615840       a2
## 795 2094  2.351654400  3.706927400  3.0638730       a2
## 796 2095  2.360620200  3.637304800  3.1381230       a2
## 797 2096  2.369805600  3.885998600  3.2000740       a2
## 798 2097  2.411359000  3.916290200  3.2280890       a2
## 799 2098  2.435931800  3.928204400  3.2879640       a2
## 800 2099  2.428711200  3.978564200  3.3472590       a2
ggplot(plot_df, aes(x = yrs, y=med, col = scenario)) +
  geom_line(size = 1.25) +
  theme_fivethirtyeight()

Simon’s Code

a2_ipcc <- subset(plot_df, scenario == "a2")
ggplot(a2_ipcc, aes(x = yrs)) +
  geom_ribbon(aes(ymin = cilo, ymax = cihi), alpha = 0.5, 
              col = NA, fill = 'skyblue') +
  geom_line(aes(y = med), size = 1.25) +
  theme_bw()

ggplot(plot_df, aes(x = yrs, col = scenario, fill = scenario)) +
  geom_ribbon(aes(ymin = cilo, ymax = cihi), alpha = 0.25) +
  geom_line(aes(y = med), size = 1.25) +
  theme_bw()

ggplot(plot_df, aes(x = yrs, col = scenario, fill = scenario)) +
  geom_ribbon(aes(ymin = cilo, ymax = cihi), alpha = 0.25) +
  geom_line(aes(y = med), size = 1.25) +
  theme_bw() +
  facet_wrap(~ scenario)

##Model Confidence Interval versus Prediction Model Confidence Interval

##We are 95% sure that the model line will fall between the confidence interval lines

##Prediction interval