# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AMZN", "MSFT", "HD", "WMT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
prices
## # A tibble: 5,040 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMZN 2012-12-31 12.2 12.6 12.1 12.5 68380000 12.5
## 2 AMZN 2013-01-02 12.8 12.9 12.7 12.9 65420000 12.9
## 3 AMZN 2013-01-03 12.9 13.0 12.8 12.9 55018000 12.9
## 4 AMZN 2013-01-04 12.9 13.0 12.8 13.0 37484000 13.0
## 5 AMZN 2013-01-07 13.1 13.5 13.1 13.4 98200000 13.4
## 6 AMZN 2013-01-08 13.4 13.4 13.2 13.3 60214000 13.3
## 7 AMZN 2013-01-09 13.4 13.5 13.3 13.3 45312000 13.3
## 8 AMZN 2013-01-10 13.4 13.4 13.1 13.3 57268000 13.3
## 9 AMZN 2013-01-11 13.3 13.4 13.2 13.4 48266000 13.4
## 10 AMZN 2013-01-14 13.4 13.7 13.4 13.6 85500000 13.6
## # … with 5,030 more rows
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 80 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AMZN 2013-03-28 0.0604
## 2 AMZN 2013-06-28 0.0412
## 3 AMZN 2013-09-30 0.119
## 4 AMZN 2013-12-31 0.243
## 5 AMZN 2014-03-31 -0.170
## 6 AMZN 2014-06-30 -0.0351
## 7 AMZN 2014-09-30 -0.00723
## 8 AMZN 2014-12-31 -0.0382
## 9 AMZN 2015-03-31 0.181
## 10 AMZN 2015-06-30 0.154
## # … with 70 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "HD" "MSFT" "WMT"
# weights
weights <- c(0.30, 0.30, 0.15, 0.25)
weights
## [1] 0.30 0.30 0.15 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.3
## 2 HD 0.3
## 3 MSFT 0.15
## 4 WMT 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0922
## 2 2013-06-28 0.0749
## 3 2013-09-30 0.0260
## 4 2013-12-31 0.135
## 5 2014-03-31 -0.0521
## 6 2014-06-30 -0.00123
## 7 2014-09-30 0.0599
## 8 2014-12-31 0.0620
## 9 2015-03-31 0.0515
## 10 2015-06-30 0.0191
## 11 2015-09-30 0.0431
## 12 2015-12-31 0.148
## 13 2016-03-31 -0.00465
## 14 2016-06-30 0.0518
## 15 2016-09-30 0.0683
## 16 2016-12-30 -0.0156
## 17 2017-03-31 0.101
## 18 2017-06-30 0.0628
## 19 2017-09-29 0.0409
## 20 2017-12-29 0.186
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "violet", binwidth = 0.01) +
geom_density() +
# formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
What return should you expect from the portfolio in a typical quarter?
You should expect a return between 1-7.5% from this portfolio in a typical quarter, but you may end up with returns higher or lower than that. It is most common to get a 5% return from this portfolio.