Setup

Set working directory

knitr::opts_knit$set(root.dir = "/research/labs/neurology/fryer/m214960/aducanumab/scripts/R")

Load libraries

# load libraries
library(cowplot)    # plot_grid()
library(dplyr)      # left_join()
library(ggplot2)    # ggplot()
library(gridExtra)  # grid.arrange()
library(harmony)    # RunHarmony()
library(parallel)   # detectCores()
library(plotly)     # plot_ly()
library(Seurat)     # Read10X_h5()
library(ShinyCell)  # makeShinyApp()
library(stringr)    # str_match()

Set variables and thresholds

# variables
sample_order <- c("IgG.F.939A","IgG.F.939B","IgG.F.959B",
                  "IgG.M.823A","IgG.M.851A",
                  "Adu.F.736B","Adu.F.738A","Adu.F.738B",
                  "Adu.M.705A","Adu.M.734A")
group_order <- c("IgG","Adu")
sex_order <- c("Male","Female")
sample_colors <- c("gray","red","orange","yellow","green","forestgreen","cyan","blue","purple","pink")
group_colors <- c("gray","cornflowerblue")
sex_colors <- c("darkgray","purple")

# thresholds
nCount.min <- 200
nCount.max <- 10000
nFeature.min <- 100
complexity.cutoff <- 0.8
mt.cutoff <- 20
ribo.cutoff <- 20
hb.cutoff <- 3
ttr.cutoff <- 1

# set seed
set.seed(8)

# work in parallel
options(mc.cores = detectCores() - 1)

Save functions

These functions with help simultaneously save plots as a png and pdf.

saveToPDF <- function(...) {
    d = dev.copy(pdf,...)
    dev.off(d)
}
saveToPNG <- function(...) {
    d = dev.copy(png,...)
    dev.off(d)
}

Load data

Merge h5

  • We are using CellBender filtered output with false positive rate of 0.05.
  • Two of the files say ‘pass2’ because the CellBender -total-droplets-included argument was adjusted.
prefix <- "../../cellbender/"
suffix <- "_fpr_0.05_filtered.h5"

if (file.exists("../../rObjects/mouse_merged_h5.rds")) {
  mouse <- readRDS("../../rObjects/mouse_merged_h5.rds")
} else {
  # individual sample objects
  IgG.F.939A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"939A_IgG_Female",suffix)))
  IgG.F.939B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"939B_IgG_Female",suffix)))
  IgG.F.959B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"959B_IgG_Female",suffix)))
  IgG.M.823A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"823A_IgG_Male",suffix)))
  IgG.M.851A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"851A_IgG_Male",suffix)))
  Adu.F.736B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"736B_Adu_Female",suffix)))
  Adu.F.738A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"738A_Adu_Female",suffix)))
  Adu.F.738B <- CreateSeuratObject(Read10X_h5(paste0(prefix,"738B_Adu_Female",suffix)))
  Adu.M.705A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"705A_Adu_Male",suffix)))
  Adu.M.734A <- CreateSeuratObject(Read10X_h5(paste0(prefix,"734A_Adu_Male",suffix)))

  # merge objects
  mouse <- merge(x = IgG.F.939A, 
                y = c(IgG.F.939B, IgG.F.959B, IgG.M.823A, IgG.M.851A,
                      Adu.F.736B, Adu.F.738A, Adu.F.738B, Adu.M.705A, Adu.M.734A), 
                add.cell.ids = c("IgG.F.939A","IgG.F.939B","IgG.F.959B","IgG.M.823A",
                                 "IgG.M.851A","Adu.F.736B","Adu.F.738A","Adu.F.738B",
                                 "Adu.M.705A","Adu.M.734A"), 
                project = "Aducanumab Mice scRNAseq")
  
  # cleanup and save
  remove(IgG.F.939A, IgG.F.939B, IgG.F.959B, IgG.M.823A, IgG.M.851A,
         Adu.F.736B, Adu.F.738A, Adu.F.738B, Adu.M.705A, Adu.M.734A)
  saveRDS(mouse, "../../rObjects/mouse_merged_h5.rds")
}

# preview
mouse
## An object of class Seurat 
## 32285 features across 70028 samples within 1 assay 
## Active assay: RNA (32285 features, 0 variable features)

Annotation

  • Gm* genes are originally annotated by MGI and the *Rik genes are annotated by RIKEN
# read in annotation file, GENCODE GRCm38 version M23 (Ensembl 98)
if (file.exists("../../rObjects/annotation.rds")) {
  genes <- readRDS("../../rObjects/annotation.rds")
} else {
  gtf.file <- "../../refs/mouse_genes.gtf"
  genes <- rtracklayer::import(gtf.file)
  genes <- as.data.frame(genes)
  genes <- genes[genes$type == "gene",]
  saveRDS(genes, "../../rObjects/annotation.rds")
}

Metadata columns

nCount_RNA = total number of transcripts (UMIs) in a single cell nFeature_RNA = number of unique transcripts (features)

# create sample column
barcodes <- colnames(mouse)
sample <- str_match(barcodes, "(.+)_[ACGT]+-(\\d+)")[,2]
mouse$sample <- factor(sample, levels = sample_order)
Idents(mouse) <- mouse$sample

# sex column
sex <- str_match(mouse$sample, "[IgGAdu]+\\.([FM]).[0-9]+[AB]")[,2]
sex <- gsub("F","Female",sex)
sex <- gsub("M","Male",sex)
mouse$sex <- factor(sex, levels = sex_order)

# group column
group <- str_match(mouse$sample, "([IgGAdu]+)\\.[FM].[0-9]+[AB]")[,2]
mouse$group <- factor(group, levels = group_order)

# cell.complexity
mouse$cell.complexity <- log10(mouse$nFeature_RNA) / log10(mouse$nCount_RNA)

# percent.mt
mt.genes <- genes[genes$seqnames == "chrM",13]
mouse$percent.mt <- PercentageFeatureSet(mouse, features = mt.genes)
mt.genes
##  [1] "mt-Nd1"  "mt-Nd2"  "mt-Co1"  "mt-Co2"  "mt-Atp8" "mt-Atp6" "mt-Co3" 
##  [8] "mt-Nd3"  "mt-Nd4l" "mt-Nd4"  "mt-Nd5"  "mt-Nd6"  "mt-Cytb"
# percent.ribo
# ribosomal proteins begin with 'Rps' or 'Rpl' in this annotation file
# mitochondrial ribosomes start with 'Mrps' or 'Mrpl'
gene.names <- genes$gene_name
ribo <- gene.names[grep("^Rp[sl]", gene.names)]
mt.ribo <- gene.names[grep("^Mrp[sl]", gene.names)]
ribo.combined <- c(mt.ribo,ribo)
mouse$percent.ribo.protein <- PercentageFeatureSet(mouse, features = ribo.combined)
ribo.combined
##   [1] "Mrpl15"     "Mrpl30"     "Mrps9"      "Mrpl44"     "Mrps14"    
##   [6] "Mrpl41"     "Mrps2"      "Mrps5"      "Mrps26"     "Mrps28"    
##  [11] "Mrpl47"     "Mrpl24"     "Mrpl9"      "Mrps21"     "Mrpl50"    
##  [16] "Mrpl37"     "Mrps15"     "Mrpl20"     "Mrpl33"     "Mrpl1"     
##  [21] "Mrps18c"    "Mrps17"     "Mrps33"     "Mrpl35"     "Mrpl19"    
##  [26] "Mrpl53"     "Mrps25"     "Mrpl51"     "Mrps35"     "Mrps12"    
##  [31] "Mrpl46"     "Mrps11"     "Mrpl48"     "Mrpl17"     "Mrpl23"    
##  [36] "Mrps31"     "Mrpl34"     "Mrpl4"      "Mrps22"     "Mrpl3"     
##  [41] "Mrpl54"     "Mrpl42"     "Mrps24"     "Mrpl22"     "Mrpl55"    
##  [46] "Mrps23"     "Mrpl27"     "Mrpl10"     "Mrpl45"     "Mrpl58"    
##  [51] "Mrps7"      "Mrpl38"     "Mrpl12"     "Mrpl32"     "Mrpl36"    
##  [56] "Mrps27"     "Mrps36"     "Mrps30"     "Mrps16"     "Mrpl52"    
##  [61] "Mrpl57"     "Mrpl13"     "Mrpl40"     "Mrpl39"     "Mrps6"     
##  [66] "Mrpl18"     "Mrps34"     "Mrpl28"     "Mrps18b"    "Mrpl14"    
##  [71] "Mrps18a"    "Mrpl2"      "Mrps10"     "Mrpl21"     "Mrpl11"    
##  [76] "Mrpl49"     "Mrpl16"     "Mrpl43"     "Rpl7"       "Rpl31"     
##  [81] "Rpl37a"     "Rps6kc1"    "Rpl7a"      "Rpl12"      "Rpl35"     
##  [86] "Rps21"      "Rpl22l1"    "Rps3a1"     "Rps27"      "Rpl34"     
##  [91] "Rps20"      "Rps6"       "Rps8"       "Rps6ka1"    "Rpl11"     
##  [96] "Rpl22"      "Rpl9"       "Rpl5"       "Rplp0"      "Rpl6"      
## [101] "Rpl21"      "Rpl32"      "Rps9"       "Rpl28"      "Rps5"      
## [106] "Rps19"      "Rps16"      "Rps11"      "Rpl13a"     "Rpl18"     
## [111] "Rps17"      "Rps3"       "Rpl27a"     "Rps13"      "Rps15a"    
## [116] "Rplp2"      "Rpl18a"     "Rpl13"      "Rps25"      "Rpl10-ps3" 
## [121] "Rplp1"      "Rpl4"       "Rps27l"     "Rpl29"      "Rps27rt"   
## [126] "Rpsa"       "Rpl14"      "Rps12"      "Rps15"      "Rpl41"     
## [131] "Rps26"      "Rps27a"     "Rpl26"      "Rpl23a"     "Rpl9-ps1"  
## [136] "Rps6kb1"    "Rpl23"      "Rpl19"      "Rpl27"      "Rpl38"     
## [141] "Rps7"       "Rpl10l"     "Rps29"      "Rpl36al"    "Rps6kl1"   
## [146] "Rps6ka5"    "Rps23"      "Rpl15"      "Rps24"      "Rpl36a-ps1"
## [151] "Rpl37"      "Rpl30"      "Rpl8"       "Rpl3"       "Rps19bp1"  
## [156] "Rpl39l"     "Rpl35a"     "Rpl24"      "Rps6ka2"    "Rps2"      
## [161] "Rpl3l"      "Rps10"      "Rpl10a"     "Rps28"      "Rps18"     
## [166] "Rpl7l1"     "Rpl36"      "Rpl36-ps4"  "Rps14"      "Rpl17"     
## [171] "Rps6kb2"    "Rps6ka4"    "Rpl9-ps6"   "Rpl39"      "Rpl10"     
## [176] "Rps4x"      "Rps6ka6"    "Rpl36a"     "Rps6ka3"
# percent.hb
# percent.hb - hemoglobin proteins begin with 'Hbb' or 'Hba' for mouse
hb.genes <- gene.names[grep("^Hb[ba]-", gene.names)]
mouse$percent.hb <- PercentageFeatureSet(mouse, features = hb.genes)
hb.genes
## [1] "Hbb-bt"  "Hbb-bs"  "Hbb-bh2" "Hbb-bh1" "Hbb-y"   "Hba-x"   "Hba-a1" 
## [8] "Hba-a2"
# percent Ttr
mouse$percent.ttr <- PercentageFeatureSet(mouse, features = "Ttr")

Remove sample

Remove sample Adu.F.738A due to low cell count and abberant QC metrics.

# remove Adu.F.738A
mouse <- subset(mouse, sample != "Adu.F.738A")

# reset order
sample_order <- c("IgG.F.939A","IgG.F.939B","IgG.F.959B",
                  "IgG.M.823A","IgG.M.851A",
                  "Adu.F.736B","Adu.F.738B",
                  "Adu.M.705A","Adu.M.734A")
mouse$sample <- factor(mouse$sample, levels = sample_order)
sample_colors <- c("gray","red","orange","yellow","green","forestgreen","blue",
                   "purple","pink")

Pre-filtering QC

Number of cells

# Visualize the number of cell counts per sample
data <- as.data.frame(table(mouse$sample))
colnames(data) <- c("sample","frequency")

ncells1 <- ggplot(data, aes(x = sample, y = frequency, fill = sample)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = frequency), 
            position=position_dodge(width=0.9), 
            vjust=-0.25) +
  scale_fill_manual(values = sample_colors) + 
  scale_y_continuous(breaks = seq(0,20000, by = 2000), limits = c(0,20000)) +
  ggtitle("Raw: cells per sample") +
  theme(legend.position =  "none") + 
  theme(axis.text.x = element_text(angle = 45, hjust=1))
ncells1

Density plots

# Visualize nCount_RNA
den1 <- ggplot(mouse@meta.data,
       aes(color = sample,
           x = nCount_RNA,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  scale_color_manual(values = sample_colors) +
  scale_fill_manual(values = sample_colors) +
  xlab("nCount_RNA") +
  ylab("Density") +
  theme(legend.position =  "none") +
  geom_vline(xintercept = nCount.min) +
  geom_vline(xintercept = nCount.max) +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize nFeature_RNA
den2 <- ggplot(mouse@meta.data,
       aes(color = sample,
           x = nFeature_RNA,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("nFeature_RNA") +
  ylab("Density") +
  geom_vline(xintercept = nFeature.min) +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize cell complexity
# Quality cells are usually above 0.85
den3 <- ggplot(mouse@meta.data,
       aes(color = sample,
           x = cell.complexity,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("Cell Complexity (log10(nFeature/nCount))") +
  ylab("Density") +
  geom_vline(xintercept = complexity.cutoff) +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize percent.mt
den4 <- ggplot(mouse@meta.data,
       aes(color = sample,
           x = percent.mt,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_continuous(n.breaks = 4) +
  geom_vline(xintercept = mt.cutoff) +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("% Mitochondrial Genes") +
  ylab("Density") +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize percent.ribo.protein
den5 <- ggplot(mouse@meta.data,
       aes(color = sample,
           x = percent.ribo.protein,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  geom_vline(xintercept = ribo.cutoff) +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("% Ribosomal Protein Genes") +
  ylab("Density") +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize percent.hb
den6 <- ggplot(mouse@meta.data,
       aes(color = sample,
           x = percent.hb,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  geom_vline(xintercept = hb.cutoff) +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("% Hemoglobin Genes") +
  ylab("Density") +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Arrange graphs in grid
plots <- list(den1,den2,den3,den4,den5,den6)
layout <- rbind(c(1,4),c(2,5),c(3,6))
grid <- grid.arrange(grobs = plots, layout_matrix = layout)

Violin plots

# nFeature, nCount, and cell.complexity violins
v1 <- VlnPlot(mouse,
              features = c("nFeature_RNA", "nCount_RNA","cell.complexity"),
              ncol = 3,
              group.by = 'sample',
              cols = sample_colors,
              pt.size = 0)
v1

#  percent violins
v2 <- VlnPlot(mouse,
              features = c("percent.mt","percent.ribo.protein","percent.hb","percent.ttr"),
              ncol = 4,
              group.by = 'sample',
              cols = sample_colors,
              pt.size = 0)
v2

Scatter plots

s1 <- ggplot(
  mouse@meta.data,
  aes(x = nCount_RNA, y = nFeature_RNA, color = percent.mt)) + 
  geom_point() + 
  geom_smooth(method = "lm") +
    scale_x_log10() +       
  scale_y_log10() + 
  theme_classic() +
  geom_vline(xintercept = nCount.min) + 
  geom_hline(yintercept = nFeature.min) + 
  facet_wrap(~sample) +
  scale_colour_gradient(low = "gray90", high = "black", limits =c(0,100))
s1
## `geom_smooth()` using formula 'y ~ x'

s2 <- FeatureScatter(mouse,
                     feature1 = "nCount_RNA",
                     feature2 = "percent.mt",
                     group.by = 'sample',
                     cols = sample_colors,
                     shuffle = TRUE)
s2

Filtering

Cell-level filtering

# filter
mouse.filtered <- subset(mouse,
                        subset = (nCount_RNA > nCount.min) &
                          (nCount_RNA < nCount.max) &
                          (nFeature_RNA > nFeature.min) &
                          (cell.complexity > complexity.cutoff) &
                          (percent.mt < mt.cutoff) &
                          (percent.ribo.protein < ribo.cutoff) &
                          (percent.hb < hb.cutoff) &
                          (percent.ttr < ttr.cutoff))

# print cells removed
print(paste0(dim(mouse)[2] - dim(mouse.filtered)[2]," cells removed"))
## [1] "18815 cells removed"

Gene-level filtering

Remove lowly expressed genes. We will keep genes that have at least 1 count in 10 cells.

# filter genes
counts <- GetAssayData(object = mouse.filtered, slot = "counts")
nonzero <- counts > 0  # produces logical
keep <- Matrix::rowSums(nonzero) >= 10  # sum the true/false
counts.filtered <- counts[keep,]  # keep certain genes

# overwrite mouse.filtered
mouse.filtered <- CreateSeuratObject(counts.filtered, 
                                    meta.data = mouse.filtered@meta.data)

# print features removed
print(paste0(dim(counts)[1] - dim(counts.filtered)[1], " features removed"))
## [1] "11269 features removed"

Multiple passes were made to assess whether mitochondrial, ribosomal, and immunoglobulin genes should be removed. Ultimately, removal of these genes enhanced clustering.

# remove mt.genes
counts <- GetAssayData(object = mouse.filtered, slot = "counts")
keep <- !rownames(counts) %in% mt.genes # false when mt.gene
counts.filtered <- counts[keep,]

# remove ribo.genes
#keep <- !rownames(counts.filtered) %in% ribo.combined
#counts.filtered <- counts.filtered[keep,]

# remove Ig genes + Jchain but keep Igha + Ighd to enahnce clustering
#gene.types <- c("IG_C_gene","IG_C_pseudogene","IG_D","IG_J_gene","IG_LV_gene",
#                "IG_V_gene","IG_V_pseudogene")
#keep <- (genes$gene_type) %in% gene.types
#ig.genes <- genes[keep,]
#ig.genes <- c(ig.genes$gene_name, "Jchain")
#ig.genes <- ig.genes[-c(185,192)] # keep Igha and Ighd
#ig.genes
#keep <- !rownames(counts.filtered) %in% ig.genes
#counts.filtered <- counts.filtered[keep,]

# overwrite mouse.filtered
mouse.filtered <- CreateSeuratObject(counts.filtered, 
                                    meta.data = mouse.filtered@meta.data)

# print features removed
print(paste0(dim(counts)[1] - dim(counts.filtered)[1], " features removed"))
## [1] "13 features removed"
# cleanup data
remove(mouse,counts,counts.filtered,nonzero)

Post-filtering QC

Number of cells

# Visualize the number of cell counts per sample
data <- as.data.frame(table(mouse.filtered$sample))
colnames(data) <- c("sample","frequency")

ncells2 <- ggplot(data, aes(x = sample, y = frequency, fill = sample)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = frequency), 
            position=position_dodge(width=0.9), 
            vjust=-0.25) +
  scale_fill_manual(values = sample_colors) + 
  scale_y_continuous(breaks = seq(0,20000, by = 2000), limits = c(0,20000)) +
  ggtitle("Filtered: cells per sample") +
  theme(legend.position =  "none") + 
  theme(axis.text.x = element_text(angle = 45, hjust=1))

# Arrange graphs in grid
plots <- list(ncells1,ncells2)
layout <- rbind(c(1),c(2))
grid <- grid.arrange(grobs = plots, layout_matrix = layout)

Density plots

# Visualize nCount_RNA
den1 <- ggplot(mouse.filtered@meta.data,
       aes(color = sample,
           x = nCount_RNA,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  scale_color_manual(values = sample_colors) +
  scale_fill_manual(values = sample_colors) +
  xlab("nCount_RNA") +
  ylab("Density") +
  theme(legend.position =  "none") +
  geom_vline(xintercept = nCount.min) +
  geom_vline(xintercept = nCount.max) +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize nFeature_RNA
den2 <- ggplot(mouse.filtered@meta.data,
       aes(color = sample,
           x = nFeature_RNA,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("nFeature_RNA") +
  ylab("Density") +
  geom_vline(xintercept = nFeature.min) +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize cell complexity
# Quality cells are usually above 0.85
den3 <- ggplot(mouse.filtered@meta.data,
       aes(color = sample,
           x = cell.complexity,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("Cell Complexity (log10(nFeature/nCount))") +
  ylab("Density") +
  geom_vline(xintercept = complexity.cutoff) +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize percent.mt
den4 <- ggplot(mouse.filtered@meta.data,
       aes(color = sample,
           x = percent.mt,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_continuous(n.breaks = 4) +
  geom_vline(xintercept = mt.cutoff) +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("% Mitochondrial Genes") +
  ylab("Density") +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize percent.ribo.protein
den5 <- ggplot(mouse.filtered@meta.data,
       aes(color = sample,
           x = percent.ribo.protein,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  geom_vline(xintercept = ribo.cutoff) +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("% Ribosomal Protein Genes") +
  ylab("Density") +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Visualize percent.hb
den6 <- ggplot(mouse.filtered@meta.data,
       aes(color = sample,
           x = percent.hb,
           fill = sample)) +
  geom_density(alpha = 0.2) +
  theme_classic() +
  scale_x_log10() +
  geom_vline(xintercept = hb.cutoff) +
  scale_color_manual(values = sample_colors) +
  theme(legend.position =  "none") +
  scale_fill_manual(values = sample_colors) +
  xlab("% Hemoglobin Genes") +
  ylab("Density") +
  theme(legend.key.size = unit(0.25, 'cm'), legend.title = element_text(size=9))

# Arrange graphs in grid
plots <- list(den1,den2,den3,den4,den5,den6)
layout <- rbind(c(1,4),c(2,5),c(3,6))
grid <- grid.arrange(grobs = plots, layout_matrix = layout)

Violin plots

# nFeature, nCount, and cell.complexity violins
v3 <- VlnPlot(mouse.filtered,
              features = c("nFeature_RNA", "nCount_RNA","cell.complexity"),
              ncol = 3,
              group.by = 'sample',
              cols = sample_colors,
              pt.size = 0)
v3

#  percent violins
v4 <- VlnPlot(mouse.filtered,
              features = c("percent.mt","percent.ribo.protein","percent.hb","percent.ttr"),
              ncol = 4,
              group.by = 'sample',
              cols = sample_colors,
              pt.size = 0)
v4

Scatter plots

s3 <- ggplot(
  mouse.filtered@meta.data,
  aes(x = nCount_RNA, y = nFeature_RNA, color = percent.mt)) + 
  geom_point() + 
  geom_smooth(method = "lm") +
    scale_x_log10() +       
  scale_y_log10() + 
  theme_classic() +
  geom_vline(xintercept = nCount.min) + 
  geom_hline(yintercept = nFeature.min) + 
  facet_wrap(~sample) +
  scale_colour_gradient(low = "gray90", high = "black", limits =c(0,100))
s3
## `geom_smooth()` using formula 'y ~ x'

s4 <- FeatureScatter(mouse.filtered,
                     feature1 = "nCount_RNA",
                     feature2 = "percent.mt",
                     group.by = 'sample',
                     cols = sample_colors,
                     shuffle = TRUE)
s4

Box plot

# Visualize the distribution of genes detected per cell via boxplot
b1 <- ggplot(mouse.filtered@meta.data,
       aes(x = sample, 
           y = log10(nFeature_RNA), 
           fill=sample)) + 
  geom_boxplot() + 
  theme_classic() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  theme(plot.title = element_text(hjust = 0.5, face="bold")) +
  ggtitle("Unique Genes / Cell / Sample") +
  scale_color_manual(values = sample_colors) +
  scale_fill_manual(values = sample_colors) +
  xlab("Sample")
b1

Top transcripts

df <- data.frame(row.names = rownames(mouse.filtered))
df$rsum <- rowSums(x = mouse.filtered, slot = "counts")
df$gene_name <- rownames(df)
df <- df[order(df$rsum, decreasing = TRUE),]
colnames(df)[1] <- "rsum_raw_count"
head(df, 30)
##            rsum_raw_count  gene_name
## Malat1            8815978     Malat1
## Meg3               800075       Meg3
## Gm42418            620311    Gm42418
## Snhg11             586740     Snhg11
## Cst3               532592       Cst3
## Srrm2              170959      Srrm2
## Apoe               164760       Apoe
## Kcnq1ot1           148645   Kcnq1ot1
## Gria2              137485      Gria2
## R3hdm1             135961     R3hdm1
## Nrxn1              122347      Nrxn1
## Ctsd               114336       Ctsd
## Gm26917            114066    Gm26917
## Ctss               112414       Ctss
## Ahi1               111442       Ahi1
## Rian               107241       Rian
## Ptprd              103018      Ptprd
## Hexb               100381       Hexb
## C1qa                99541       C1qa
## C1qb                96931       C1qb
## Macf1               94906      Macf1
## Syne1               90413      Syne1
## Syt1                89682       Syt1
## Ank2                86064       Ank2
## Snhg14              85484     Snhg14
## Mycbp2              85463     Mycbp2
## AC149090.1          85272 AC149090.1
## Celf2               79188      Celf2
## Son                 78609        Son
## Ube3a               76987      Ube3a

Unwanted variation

Cell cycle

Score

  • cell cycle scoring guide
  • The most common biological data correction is to remove the effects of the cell cycle on the transcriptome.
  • Raw counts are not comparable between cells. Each cell has a different nCount_RNA. The log normalization, ((nCount_RNA / nFeature_RNA) * log1p, is taken in order to explore variation.
  • We will not ultimately use Seurat’s method of normalization; we will use SCTransform.
# log normalization
mouse.phase <- NormalizeData(mouse.filtered)
  • Each cell is given score based on expression of G1, G2/M, and S phase markers.
  • G1: ~10 hrs, S: ~5-6 hrs, G2: ~3-4 hrs, M: ~2 hrs
  • G1 (10 hrs) > G2/M (5-6 hrs) = S (5-6 hrs)
  • If the score is negative for both S.Score and G2M.Score the phase is G1. Otherwise, the the greatest positive value between S.Score and G2M.Score determines the phase.
# load mouse cell cycle markers
phase.markers <- read.delim("../../refs/mouse_cell_cycle.txt")
colnames(phase.markers)[2] <- "gene_id"
phase.markers <- left_join(phase.markers, genes[,c(10,13)], by = "gene_id")
g2m <- phase.markers[phase.markers$phase == "G2/M", 4]
g2m
##  [1] "Ube2c"   "Lbr"     "Ctcf"    "Cdc20"   "Cbx5"    "Kif11"   "Anp32e" 
##  [8] "Birc5"   "Cdk1"    "Tmpo"    "Hmmr"    "Jpt1"    "Pimreg"  "Aurkb"  
## [15] "Top2a"   "Gtse1"   "Rangap1" "Cdca3"   "Ndc80"   "Kif20b"  "Cenpf"  
## [22] "Nek2"    "Nuf2"    "Nusap1"  "Bub1"    "Tpx2"    "Aurka"   "Ect2"   
## [29] "Cks1b"   "Kif2c"   "Cdca8"   "Cenpa"   "Mki67"   "Ccnb2"   "Kif23"  
## [36] "Smc4"    "G2e3"    "Tubb4b"  "Anln"    "Tacc3"   "Dlgap5"  "Ckap2"  
## [43] "Ncapd2"  "Ttk"     "Ckap5"   "Cdc25c"  "Hjurp"   "Cenpe"   "Ckap2l" 
## [50] "Cdca2"   "Hmgb2"   "Cks2"    "Psrc1"   "Gas2l3"
s <- phase.markers[phase.markers$phase == "S", 4]
s
##  [1] "Cdc45"    "Uhrf1"    "Mcm2"     "Slbp"     "Mcm5"     "Pola1"   
##  [7] "Gmnn"     "Cdc6"     "Rrm2"     "Atad2"    "Dscc1"    "Mcm4"    
## [13] "Chaf1b"   "Rfc2"     "Msh2"     "Fen1"     "Hells"    "Prim1"   
## [19] "Tyms"     "Mcm6"     "Wdr76"    "Rad51"    "Pcna"     "Ccne2"   
## [25] "Casp8ap2" "Usp1"     "Nasp"     "Rpa2"     "Ung"      "Rad51ap1"
## [31] "Blm"      "Pold3"    "Rrm1"     "Cenpu"    "Gins2"    "Tipin"   
## [37] "Brip1"    "Dtl"      "Exo1"     "Ubr7"     "Clspn"    "E2f8"    
## [43] "Cdca7"
# write table
write.table(phase.markers, 
            "../../results/nine_samples/cellcycle/mouse_cell_cycle_phase_markers.tsv",
            quote = FALSE, sep = "\t", row.names = FALSE)

# score cells
mouse.phase <- CellCycleScoring(mouse.phase,
                                g2m.features = g2m,
                                s.features = s,
                                set.ident = TRUE)
mouse.filtered[["phase"]] <- mouse.phase$Phase

Top variable genes

Find the top variable genes before performing PCA. The data is scaled since highly expressed genes usually are the most variable. This will make the mean expression zero and the variance of each gene across cells is one.

# Identify the most variable genes
mouse.phase <- FindVariableFeatures(mouse.phase, verbose = FALSE)

# Preview top 40
head(VariableFeatures(mouse.phase), 40)
##  [1] "Spp1"     "Apoe"     "Cd74"     "Ptgds"    "Lyz2"     "Tmsb4x"  
##  [7] "Ccl12"    "Ccl4"     "Fth1"     "Flt1"     "H2-Aa"    "Bsg"     
## [13] "Cxcl12"   "Cldn5"    "H2-Ab1"   "H2-Eb1"   "Plp1"     "Rgs5"    
## [19] "Cst7"     "Cxcl10"   "Ctsd"     "Vtn"      "Ccl3"     "Ftl1"    
## [25] "Rps29"    "Sst"      "Actb"     "Camk2n1"  "Mal"      "Tyrobp"  
## [31] "Slco1a4"  "Ccl5"     "Ifi27l2a" "Selenow"  "Fau"      "Vip"     
## [37] "Eef1a1"   "Itm2a"    "Ifitm3"   "Cryab"
# Scale the counts
mouse.phase <- ScaleData(mouse.phase)
## Centering and scaling data matrix

PCA

If the PCA plots for each phase do not look similar you may want to regress out variation due to cell cycle phase. Otherwise, nothing needs to be done. G1 (10 hrs) > G2/M (5-6 hrs) = S (5-6 hrs)

# Run PCA
mouse.phase <- RunPCA(mouse.phase, nfeatures.print = 10)
## PC_ 1 
## Positive:  R3hdm1, Erc2, Atp2b1, Phactr1, Pde10a, Gria1, Homer1, Cit, Gm3764, Slc17a7 
## Negative:  Cst3, Tmsb4x, Ctsd, C1qb, C1qa, Itm2b, C1qc, Ctss, Hexb, Tyrobp 
## PC_ 2 
## Positive:  Cx3cr1, Gpr34, Csf1r, Hexb, Lgmn, C1qc, Ctss, Lpcat2, Tgfbr1, C1qa 
## Negative:  Cox8a, Selenow, Rpl9, Cox4i1, Dbi, Mt3, Chchd2, Rpl38, Calm1, Rpl3 
## PC_ 3 
## Positive:  Atp1a2, Slc1a2, Slc1a3, Ntsr2, Ptprz1, Qk, Bcan, Appl2, Ndrg2, Sparcl1 
## Negative:  R3hdm1, Atp2b1, Erc2, Homer1, Phactr1, Pde10a, Slc17a7, Plk2, Gria1, Cit 
## PC_ 4 
## Positive:  Camk2n1, Mt3, Selenow, Pcsk1n, Cox8a, Cpe, Dbi, Aldoc, 2900097C17Rik, Cox6c 
## Negative:  Flt1, Ahnak, Rgs5, Slco1a4, Pltp, Cldn5, Ly6a, Cxcl12, Ptprb, Egfl7 
## PC_ 5 
## Positive:  Plp1, Mbp, Mag, Enpp2, Mal, Gjc3, Aspa, Gatm, Ptgds, Sept4 
## Negative:  Ntsr2, Gm6145, Gm3764, Nwd1, Slc1a2, Phkg1, Fgfr3, Slc1a3, Atp13a4, Slc7a10
# Plot
pca1 <- DimPlot(mouse.phase,
               reduction = "pca",
               group.by = "Phase",
               split.by = "Phase")
pca1

pca2 <- DimPlot(mouse.phase,
               reduction = "pca",
               group.by = "Phase",
               shuffle = TRUE)
pca2

Bar graph

data <- as.data.frame(table(mouse.phase$Phase))
colnames(data) <- c("Phase","frequency")

ncells3 <- ggplot(data, aes(x = Phase, y = frequency, fill = Phase)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = frequency), 
            position=position_dodge(width=0.9), 
            vjust=-0.25) +
  ggtitle("Cells per phase")
ncells3

Percent cells per phase

percent.phase <- mouse.phase@meta.data %>%
  group_by(sample, Phase) %>%
  dplyr::count() %>%
  group_by(sample) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x = sample, y = percent, fill = Phase)) +
  geom_col() +
  ggtitle("Percentage of phase per sample") + 
  theme(axis.text.x = element_text(angle = 45, hjust=1))
percent.phase

Mitochondrial fraction

PCA

Evaluating effects of mitochondrial expression

# Check quartile values and store
summary(mouse.phase$percent.mt)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  1.4390  0.6983 19.9800
first <- as.numeric(summary(mouse.phase$percent.mt)[2])
mean <- as.numeric(summary(mouse.phase$percent.mt)[4])
third <- as.numeric(summary(mouse.phase$percent.mt)[5])

# Turn percent.mt into factor based on quartile value
mouse.phase@meta.data$mito.factor <- cut(mouse.phase@meta.data$percent.mt, 
                   breaks=c(-Inf, first, mean, third, Inf), 
                   labels=c("Low","Medium","Medium high", "High"))
mouse.filtered[["mito.factor"]] <- mouse.phase$mito.factor

# Plot
pca1 <- DimPlot(mouse.phase,
               reduction = "pca",
               group.by = "mito.factor",
               split.by = "mito.factor")
pca1

pca2 <- DimPlot(mouse.phase,
               reduction = "pca",
               group.by = "mito.factor",
               shuffle = TRUE)
pca2

Bar graph

data <- as.data.frame(table(mouse.phase$mito.factor))
colnames(data) <- c("mito.factor","frequency")

ncells4 <- ggplot(data, aes(x = mito.factor, y = frequency, fill = mito.factor)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = frequency), 
            position=position_dodge(width=0.9), 
            vjust=-0.25) +
  ggtitle("Cells per phase")
ncells4

Percent cells per quartile

percent <- mouse.phase@meta.data %>%
  group_by(sample, mito.factor) %>%
  dplyr::count() %>%
  group_by(sample) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x = sample, y = percent, fill = mito.factor)) +
  geom_col() +
  ggtitle("Mitochondrial fraction per sample") + 
  theme(axis.text.x = element_text(angle = 45, hjust=1))
percent

SCTransform

  • Now, we can use the SCTransform method as a more accurate method of normalizing, estimating the variance of the raw filtered data, and identifying the most variable genes. Variation in sequencing depth (total nCount_RNA per cell) is normalized using a regularized negative binomial model.

  • Sctransform automatically accounts for cellular sequencing depth by regressing out sequencing depth (nUMIs). However, if there are other sources of uninteresting variation identified in the data during the exploration steps we can also include these. We observed little to no effect due to cell cycle phase or percent.mito and so we chose not to regress this out of our data.

  • Since we have 8 samples in our dataset we want to keep them as separate objects and transform them as that is what is required for integration.

# split
mouse.split <- SplitObject(mouse.filtered, split.by = "sample")
  • We will use a ‘for loop’ to run the SCTransform() on each sample, and regress out mitochondrial expression by specifying in the vars.to.regress argument of the SCTransform() function.

  • Before we run this for loop, we know that the output can generate large R objects/variables in terms of memory. If we have a large dataset, then we might need to adjust the limit for allowable object sizes within R (Default is 500 * 1024 ^ 2 = 500 Mb).

options(future.globals.maxSize = 4000 * 1024^5)

for (i in 1:length(mouse.split)) {
  print(paste0("Sample ", i))
  mouse.split[[i]] <- SCTransform(mouse.split[[i]], 
                                  verbose = FALSE, 
                                  vars.to.regress = "percent.mt")
}
## [1] "Sample 1"
## [1] "Sample 2"
## [1] "Sample 3"
## [1] "Sample 4"
## [1] "Sample 5"
## [1] "Sample 6"
## [1] "Sample 7"
## [1] "Sample 8"
## [1] "Sample 9"
remove(mouse.filtered)
  • NOTE: By default, after normalizing, adjusting the variance, and regressing out uninteresting sources of variation, SCTransform will rank the genes by residual variance and output the 3000 most variant genes. If the dataset has larger cell numbers, then it may be beneficial to adjust this parameter higher using the variable.features.n argument. Additionally the last line of output specifies “Set default assay to SCT”.
  • It is suggested to not regress out batch, and instead use a data integration method: github link

Integration

Run harmony

  • Condition-specific clustering of cells indicates that we need to integrate the cells across conditions to ensure that cells of the same cell type cluster together.
  • To integrate, use the shared highly variable genes from each condition identified using SCTransform. Then, integrate conditions to overlay cells that are similar or have a “common set of biological features” between groups.
  • Now, using our SCTransform object as input, let’s perform the integration across conditions.
  • First, we need to specify that we want to use all of the 3000 most variable genes identified by SCTransform for the integration. By default, this function selects the top 2000 genes.
# Choose the features to use when integrating multiple data sets 
# We will use nfeatures as 3000 as defined by running SCTransform above
var.features <- SelectIntegrationFeatures(object.list = mouse.split, 
                                          nfeatures = 3000)

# merge the mouse
mouse.merged <- merge(x = mouse.split[[1]],
                      y = c(mouse.split[[2]], mouse.split[[3]], 
                            mouse.split[[4]], mouse.split[[5]], 
                            mouse.split[[6]], mouse.split[[7]],
                            mouse.split[[8]], mouse.split[[9]]))

# define the variable features 
VariableFeatures(mouse.merged) <- var.features

# run PCA on the merged object
mouse.merged <- RunPCA(object = mouse.merged, assay = "SCT")

# harmony dimensional reduction
mouse.integrated <- RunHarmony(object = mouse.merged,
                               group.by.vars = "sample", 
                               assay.use = "SCT",
                               reduction = "pca", 
                               plot_convergence = TRUE)

# save and cleanup
saveRDS(mouse.integrated, "../../rObjects/mouse_nine_samples_integrated.rds")
remove(mouse.split, var.features, mouse.merged)

Check output

# Reset idents and levels
DefaultAssay(mouse.integrated) <- "SCT"
Idents(mouse.integrated) <- "sample"
mouse.integrated$sample <- factor(mouse.integrated$sample, 
                                  levels = sample_order)
mouse.integrated$sex <- factor(mouse.integrated$sex, 
                               levels = sex_order)
mouse.integrated$group <- factor(mouse.integrated$group,
                                 levels = group_order)

# check PCA
p1 <- DimPlot(object = mouse.integrated, 
              reduction = "harmony",
              group.by = "sample",
              cols = sample_colors,
              shuffle = TRUE) + NoLegend()
p1

p2 <- VlnPlot(object = mouse.integrated, 
              features = "harmony_1", 
              group.by = "sample", 
              pt.size = 0, 
              cols = sample_colors) + NoLegend()
p2

Top variable features

Top 20 variable features

top20 <- mouse.integrated@assays$SCT@var.features[1:20]
top20
##  [1] "Cst3"    "Apoe"    "Ctss"    "Ctsd"    "Fth1"    "Tmsb4x"  "C1qa"   
##  [8] "C1qb"    "Hexb"    "Gm42418" "Plp1"    "C1qc"    "Ptgds"   "Trem2"  
## [15] "Cdr1os"  "Cst7"    "Snhg11"  "Itm2b"   "Ctsb"    "Ctsz"

PCA plot

After integration, to visualize the integrated data we can use dimensionality reduction techniques, such as PCA and Uniform Manifold Approximation and Projection (UMAP). While PCA will determine all PCs, we can only plot two at a time. In contrast, UMAP will take the information from any number of top PCs to arrange the cells in this multidimensional space. It will take those distances in multidimensional space, and try to plot them in two dimensions. In this way, the distances between cells represent similarity in expression.

To generate these visualizations with the harmony output, use reduction = “harmony”

# Plot PCA
pca1 <- DimPlot(mouse.integrated,
                reduction = "harmony",
                ncol = 3,
                split.by = "sample",
                group.by = "sample",
                cols = sample_colors)
pca1

pca2 <- DimPlot(mouse.integrated,
                reduction = "harmony",
                split.by = "group",
                group.by = "group",
                cols = group_colors)
pca2

pca3 <- DimPlot(mouse.integrated,
                reduction = "harmony",
                split.by = "sex",
                group.by = "sex",
                cols = sex_colors)
pca3

Clustering

Find significant PCs

To overcome the extensive technical noise in the expression of any single gene for scRNA-seq data, Seurat assigns cells to clusters based on their PCA scores derived from the expression of the integrated most variable genes, with each PC essentially representing a “metagene” that combines information across a correlated gene set. Determining how many PCs to include in the clustering step is therefore important to ensure that we are capturing the majority of the variation, or cell types, present in our dataset.

# Printing out the most variable genes driving PCs
print(x = mouse.integrated[["pca"]], 
      dims = 1:10,
      nfeatures = 10)
## PC_ 1 
## Positive:  Gm42418, R3hdm1, Ptprd, Gria2, Ahi1, Gm26917, Kcnq1ot1, Rian, Syt1, Nrxn1 
## Negative:  Cst3, C1qa, Ctss, C1qb, Hexb, Ctsd, C1qc, Itm2b, Trem2, Fcer1g 
## PC_ 2 
## Positive:  Hexb, Ctss, C1qb, Cst3, C1qa, Gpr34, Ctsd, Cx3cr1, C1qc, Csf1r 
## Negative:  Tmsb4x, Fth1, Rpl13, Rps24, Eef1a1, Rps29, Fau, Rpl19, Rplp1, Tpt1 
## PC_ 3 
## Positive:  R3hdm1, Ahi1, Syt1, Rian, Arpp21, Snhg11, Celf2, Snhg14, Atp2b1, Trank1 
## Negative:  Slc1a2, Atp1a2, Slc1a3, Qk, Ptprz1, Bcan, Apoe, Appl2, Ntsr2, Ndrg2 
## PC_ 4 
## Positive:  Plp1, Mbp, Neat1, Mag, Enpp2, P2ry12, Cx3cr1, Qk, Ptgds, Gatm 
## Negative:  Apoe, Cst7, Lyz2, Ctsb, Ctsz, Tyrobp, Cd63, Ctsl, Trem2, Slc1a2 
## PC_ 5 
## Positive:  Cx3cr1, Slc1a2, P2ry12, Tmem119, Selplg, Serinc3, Cst3, Lpcat2, Csf1r, Ifngr1 
## Negative:  Plp1, Mbp, Neat1, Apoe, Mag, Cst7, Enpp2, Lyz2, Trf, Ptgds 
## PC_ 6 
## Positive:  Gm42418, Camk2n1, Pcsk1n, Calm1, Selenow, Mt3, Cpe, Cox8a, 2900097C17Rik, Dbi 
## Negative:  Tmsb4x, Actb, Marcks, Rgs10, Pfn1, Fau, Aif1, Rps9, Ftl1, Sh3bgrl3 
## PC_ 7 
## Positive:  Gm42418, Bsg, Flt1, Ahnak, Ly6a, Clec2d, H2-D1, H2-K1, Ifitm3, Pecam1 
## Negative:  Cst3, Plp1, C1qb, Mbp, C1qa, Ctss, Slc1a2, Neat1, Hexb, C1qc 
## PC_ 8 
## Positive:  R3hdm1, Mef2c, Slc17a7, Ptprd, Arpp21, Camk2a, A830036E02Rik, Homer1, Gpm6b, Gria3 
## Negative:  Gm42418, AY036118, Gm26917, C130073E24Rik, Erbb4, Cst3, Rgs9, Dpp6, Usp29, Cacna2d2 
## PC_ 9 
## Positive:  Rgs9, Pde10a, Phactr1, Gnal, Foxp1, Meis2, Dgkb, Unc13c, Cacna2d3, Cpne5 
## Negative:  Gm42418, Snhg11, Ptprd, Tcf4, Miat, Nrxn1, Peg3, Elavl2, Ntng1, Srrm4 
## PC_ 10 
## Positive:  Bsg, Flt1, Ahnak, Ly6a, Pecam1, Slc2a1, Ptma, Ptn, Spock2, Ifitm3 
## Negative:  Apoe, Fth1, Camk2n1, Cyth4, Hpgds, Gm42418, Pcsk1n, Mafb, Cst7, Maf

Quantitative approach to an elbow plot
- The point where the principal components only contribute 5% of standard deviation and the principal components cumulatively contribute 90% of the standard deviation.
- The point where the percent change in variation between the consecutive PCs is less than 0.1%.

First metric

# Determine percent of variation associated with each PC
stdv <- mouse.integrated[["pca"]]@stdev
sum.stdv <- sum(mouse.integrated[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100

# Calculate cumulative percents for each PC
cumulative <- cumsum(percent.stdv)

# Determine which PC exhibits cumulative percent greater than 90% and
# and % variation associated with the PC as less than 5
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co1
## [1] 41

Second metric

# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which(
  (percent.stdv[1:length(percent.stdv) - 1] - 
     percent.stdv[2:length(percent.stdv)]) > 0.1), 
  decreasing = T)[1] + 1

# last point where change of % of variation is more than 0.1%.
co2
## [1] 15

Choose the minimum of these two metrics as the PCs covering the majority of the variation in the data.

# Minimum of the two calculation
min.pc <- min(co1, co2)
min.pc
## [1] 15

Elbow plot

Use min.pc we just calculated to generate the clusters. We can plot the elbow plot again and overlay the information determined using our metrics:

# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv, 
           cumu = cumulative, 
           rank = 1:length(percent.stdv))

# Elbow plot to visualize 
  ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) + 
  geom_text() + 
  geom_vline(xintercept = 90, color = "grey") + 
  geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
  theme_bw()

UMAP

# Run UMAP
mouse.integrated <- RunUMAP(mouse.integrated,
                           dims = 1:min.pc,
                           reduction = "harmony",
                           n.components = 3) # set to 3 to use with VR

# plot UMAP
DimPlot(mouse.integrated,
        shuffle = TRUE)

Find clusters

Seurat uses a graph-based clustering approach, which embeds cells in a graph structure, using a K-nearest neighbor (KNN) graph (by default), with edges drawn between cells with similar gene expression patterns. Then, it attempts to partition this graph into highly interconnected ‘quasi-cliques’ or ‘communities’ [Seurat - Guided Clustering Tutorial].

We will use the FindClusters() function to perform the graph-based clustering. The resolution is an important argument that sets the “granularity” of the downstream clustering and will need to be optimized for every individual experiment. For datasets of 3,000 - 5,000 cells, the resolution set between 0.4-1.4 generally yields good clustering. Increased resolution values lead to a greater number of clusters, which is often required for larger datasets.

The FindClusters() function allows us to enter a series of resolutions and will calculate the “granularity” of the clustering. This is very helpful for testing which resolution works for moving forward without having to run the function for each resolution.

# Determine the K-nearest neighbor graph
mouse.unannotated <- FindNeighbors(object = mouse.integrated,
                                   assay = "SCT", # set as default after SCTransform
                                   reduction = "harmony",
                                   dims = 1:min.pc)

# Determine the clusters for various resolutions
mouse.unannotated <- FindClusters(object = mouse.unannotated,
                                  algorithm = 1, # 1 = Louvain
                                  resolution = seq(0.1,0.5,by=0.1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 50982
## Number of edges: 1614632
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9616
## Number of communities: 7
## Elapsed time: 18 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 50982
## Number of edges: 1614632
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9434
## Number of communities: 9
## Elapsed time: 18 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 50982
## Number of edges: 1614632
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9270
## Number of communities: 10
## Elapsed time: 22 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 50982
## Number of edges: 1614632
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9146
## Number of communities: 16
## Elapsed time: 19 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 50982
## Number of edges: 1614632
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9054
## Number of communities: 16
## Elapsed time: 21 seconds
mouse.unannotated$seurat_clusters <- mouse.unannotated$SCT_snn_res.0.3

Explore resolutions

# 0.1
DimPlot(mouse.unannotated,
        group.by = "SCT_snn_res.0.1",
        label = TRUE)

# 0.2
DimPlot(mouse.unannotated,
        group.by = "SCT_snn_res.0.2",
        label = TRUE)

# 0.3
DimPlot(mouse.unannotated,
        group.by = "SCT_snn_res.0.3",
        label = TRUE)

# 0.4
DimPlot(mouse.unannotated,
        group.by = "SCT_snn_res.0.4",
        label = TRUE)

# 0.5
DimPlot(mouse.unannotated,
        group.by = "SCT_snn_res.0.5",
        label = TRUE)

3D UMAP

embeddings <- mouse.unannotated@reductions$umap@cell.embeddings
embeddings <- cbind(embeddings, as.character(mouse.unannotated$seurat_clusters))
colnames(embeddings)[4] <- "seurat_clusters"
embeddings <- as.data.frame(embeddings)
embeddings$seurat_clusters <- factor(embeddings$seurat_clusters,
                                     levels = c("0","1","2","3","4",
                                                "5","6","7","8","9"))
cluster_colors <- c("chocolate4","gray","red1","yellow","green", "darkgreen","cyan",
                    "blue","plum1","magenta1")

three.dim <- plot_ly(embeddings,
                     x = ~UMAP_1, 
                     y = ~UMAP_2, 
                     z = ~UMAP_3, 
                     color = ~seurat_clusters,
                     colors = cluster_colors,
                     size = 1) 
three.dim <- three.dim %>% add_markers() 
three.dim <- three.dim %>% layout(scene = list(xaxis = list(title = 'UMAP_1'), 
                                     yaxis = list(title = 'UMAP_2'), 
                                     zaxis = list(title = 'UMAP_3')))
three.dim

Clustering QC

Split UMAPs

# not split
Idents(mouse.unannotated) <- "SCT_snn_res.0.3"
u0 <- DimPlot(mouse.unannotated,
              label = FALSE,
              cols = cluster_colors)
u0

# sample
u1 <- DimPlot(mouse.unannotated,
              label = FALSE,
              cols = cluster_colors,
              split.by = "sample",
              ncol = 3)
u1

# group
u2 <- DimPlot(mouse.unannotated,
              label = FALSE, 
              cols = cluster_colors,
              split.by = "group")
u2

# sex
u3 <- DimPlot(mouse.unannotated,
              label = FALSE, 
              cols = cluster_colors,
              split.by = "sex")
u3

# phase
u4 <- DimPlot(mouse.unannotated,
              label = FALSE, 
              cols = cluster_colors,
              split.by = "phase")
u4

# mito.factor
u5 <- DimPlot(mouse.unannotated,
              label = FALSE, 
              cols = cluster_colors,
              split.by = "mito.factor",ncol = 2)
u5

Revisit QC metrics

# nCount
f1 <- FeaturePlot(mouse.unannotated, 
                  features = "nCount_RNA",
                  pt.size = 0.4, 
                  order = TRUE) + 
  scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f1

# nFeature
f2 <- FeaturePlot(mouse.unannotated, 
                  features = "nFeature_RNA",
                  pt.size = 0.4, 
                  order = TRUE) + 
  scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f2

# percent.mt
f3 <- FeaturePlot(mouse.unannotated, 
                  features = "percent.mt",
                  pt.size = 0.4, 
                  order = TRUE) + 
  scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f3

# cell.complexity
f4 <- FeaturePlot(mouse.unannotated, 
                  features = "cell.complexity",
                  pt.size = 0.4, 
                  order = TRUE) + 
  scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f4

# percent.ribo
f5 <- FeaturePlot(mouse.unannotated, 
                  features = "percent.ribo.protein",
                  pt.size = 0.4, 
                  order = TRUE) + 
  scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f5

# percent.hb
f6 <- FeaturePlot(mouse.unannotated, 
                  features = "percent.hb",
                  pt.size = 0.4, 
                  order = TRUE) + 
  scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f6

# percent.ttr
f7 <- FeaturePlot(mouse.unannotated, 
                  features = "percent.ttr",
                  pt.size = 0.4, 
                  order = TRUE) + 
  scale_colour_gradientn(colours = c("blue","lightblue","yellow","orange","red"))
f7

Percent cells per cluster

# sample
b1 <- mouse.unannotated@meta.data %>%
  group_by(seurat_clusters, sample) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=sample)) +
  theme_classic() +
  geom_col() +
  scale_fill_manual(values = sample_colors) +
  ggtitle("Percentage of sample per cluster")
b1

# group
b2 <- mouse.unannotated@meta.data %>%
  group_by(seurat_clusters, group) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=group)) +
  theme_classic() +
  geom_col() +
  scale_fill_manual(values = group_colors) +
  ggtitle("Percentage of group per cluster")
b2

# sex
b3 <- mouse.unannotated@meta.data %>%
  group_by(seurat_clusters, sex) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=sex)) +
  theme_classic() +
  geom_col() +
  scale_fill_manual(values = sex_colors) +
  ggtitle("Percentage of sex per cluster")
b3

# phase
b4 <- mouse.unannotated@meta.data %>%
  group_by(seurat_clusters, phase) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=phase)) +
  theme_classic() +
  geom_col() +
  ggtitle("Percentage of phase per cluster")
b4

# mito.factor
b5 <- mouse.unannotated@meta.data %>%
  group_by(seurat_clusters, mito.factor) %>%
  dplyr::count() %>%
  group_by(seurat_clusters) %>%
  dplyr::mutate(percent = 100*n/sum(n)) %>%
  ungroup() %>%
  ggplot(aes(x=seurat_clusters,y=percent, fill=mito.factor)) +
  theme_classic() +
  geom_col() +
  ggtitle("Percentage of mito.factor per cluster")
b5

Number cells per cluster

# sample
sample_ncells <- FetchData(mouse.unannotated, 
                     vars = c("ident", "sample")) %>%
  dplyr::count(ident, sample) %>%
  tidyr::spread(ident, n)
sample_ncells
##       sample    0    1    2    3   4   5   6   7   8  9
## 1 IgG.F.939A 1092 1384  917  438 337 354 343 391 558 43
## 2 IgG.F.939B  135   88  282   36   9  19   8  90  39  3
## 3 IgG.F.959B  182  154  412   50  20  30  13 151  75  4
## 4 IgG.M.823A 4278 2809 1191 1105 986 740 464 367 280 39
## 5 IgG.M.851A 4939 3281 1324 1273 909 974 716 328 474 39
## 6 Adu.F.736B  110  104  211   22  13   9   5  86  38  4
## 7 Adu.F.738B  466  389  805  124  60  60  46 296  84 12
## 8 Adu.M.705A 1505 1135  807  562 425 394 401 576 157 19
## 9 Adu.M.734A 2056 1813 1092  748 733 485 502 173 259 23
write.table(sample_ncells, 
            "../../results/nine_samples/ncells/cells_per_cluster_per_sample_uannotated.tsv",
            quote = FALSE, sep = "\t", row.names = FALSE)

# group
group_ncells <- FetchData(mouse.unannotated, 
                     vars = c("ident", "group")) %>%
  dplyr::count(ident, group) %>%
  tidyr::spread(ident, n)
group_ncells
##   group     0    1    2    3    4    5    6    7    8   9
## 1   IgG 10626 7716 4126 2902 2261 2117 1544 1327 1426 128
## 2   Adu  4137 3441 2915 1456 1231  948  954 1131  538  58
write.table(group_ncells, 
            "../../results/nine_samples/ncells/cells_per_cluster_per_group_unannotated.tsv",
            quote = FALSE, sep = "\t", row.names = FALSE)

# sex
sex_ncells <- FetchData(mouse.unannotated, 
                     vars = c("ident", "sex")) %>%
  dplyr::count(ident, sex) %>%
  tidyr::spread(ident, n)
sex_ncells
##      sex     0    1    2    3    4    5    6    7    8   9
## 1   Male 12778 9038 4414 3688 3053 2593 2083 1444 1170 120
## 2 Female  1985 2119 2627  670  439  472  415 1014  794  66
write.table(sex_ncells, 
            "../../results/nine_samples/ncells/cells_per_cluster_per_sex_unannoated.tsv",
            quote = FALSE, sep = "\t", row.names = FALSE)

# mito.factor
mito.factor_ncells <- FetchData(mouse.unannotated, 
                     vars = c("ident", "mito.factor")) %>%
  dplyr::count(ident, mito.factor) %>%
  tidyr::spread(ident, n)
mito.factor_ncells
##   mito.factor     0    1    2    3    4    5    6    7    8   9
## 1        High   514  699 4277  432  112  288  582 1327 1673 144
## 2         Low 13166 8047  682 3376 2941 2062 1031  102   85   9
## 3      Medium   909 1882 1265  423  338  551  639  643   65  20
## 4 Medium high   174  529  817  127  101  164  246  386  141  13
write.table(mito.factor_ncells, 
            "../../results/nine_samples/ncells/cells_per_cluster_per_mito_factor_unannotated.tsv",
            quote = FALSE, sep = "\t", row.names = FALSE)

# phase
phase_ncells <- FetchData(mouse.unannotated, 
                     vars = c("ident", "phase")) %>%
  dplyr::count(ident, phase) %>%
  tidyr::spread(ident, n)
phase_ncells
##       phase    0    1    2    3    4    5    6    7   8  9
## 1        G1 5013 4154 4003 1894 1480 1071  793 1168 999 58
## 2       G2M 4514 3264 1487 1780  874 1047 1090  807 586 77
## 3         S 5236 3738 1551  684 1138  947  615  483 379 51
## 4 Undecided   NA    1   NA   NA   NA   NA   NA   NA  NA NA
write.table(phase_ncells, 
            "../../results/nine_samples/ncells/cells_per_cluster_per_phase_unannotated.tsv",
            quote = FALSE, sep = "\t", row.names = FALSE)

Potential Markers

Astrocytes

DefaultAssay(mouse.unannotated) <- "RNA"
mouse.unannotated <- NormalizeData(mouse.unannotated)
Idents(mouse.unannotated) <- "SCT_snn_res.0.3"
VlnPlot(mouse.unannotated,
        features = "Aqp4",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Gfap",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Gja1",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

Endothelial cells

VlnPlot(mouse.unannotated,
        features = "Pecam1",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cdh5",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Kdr",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Flt1",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

Fibroblasts

VlnPlot(mouse.unannotated,
        features = "Col1a1",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Col1a2",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Dcn",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

Macrophage/Microglia

VlnPlot(mouse.unannotated,
        features = "Tmem119",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Itgam", # aka Cd11b
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cd14",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cd68",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Ccr5",
        cols = cluster_colors,
        group.by = "SCT_snn_res.0.3")

Neurons

VlnPlot(mouse.unannotated,
        features = "Gad1",
        cols = cluster_colors,
        split.by = "seurat_clusters")
## The default behaviour of split.by has changed.
## Separate violin plots are now plotted side-by-side.
## To restore the old behaviour of a single split violin,
## set split.plot = TRUE.
##       
## This message will be shown once per session.

VlnPlot(mouse.unannotated,
        features = "Gad2",
        cols = cluster_colors,
        split.by = "seurat_clusters")

VlnPlot(mouse.unannotated,
        features = "Slc32a1",
        cols = cluster_colors,
        split.by = "seurat_clusters")

Oligodendrocyte precursor cells

VlnPlot(mouse.unannotated,
        features = "Cspg5",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Gpr17",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Olig1",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

Pericytes & SMCs

VlnPlot(mouse.unannotated,
        features = "Acta2", # actin alpha 2, smooth muscle
        cols = cluster_colors)

T-cell

  • Trac/Cd3d/Cd3e/Cd3g components of the TCR
VlnPlot(mouse.unannotated,
        features = "Trac",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cd3d",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cd3e",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cd3g",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cd8a",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

VlnPlot(mouse.unannotated,
        features = "Cd4",
        cols = cluster_colors,
        split.by = "SCT_snn_res.0.3")

Shiny App

Cleanup object

mouse.unannotated@assays$RNA@var.features <- mouse.unannotated@assays$SCT@var.features
metadata <- mouse.unannotated@meta.data
metadata <- metadata[,c(1,21,2:20)]
mouse.unannotated@meta.data <- metadata
mouse.unannotated@assays$SCT@meta.features <- metadata
mouse.unannotated@assays$RNA@meta.features <- metadata

Output directory

# make shiny folder
DefaultAssay(mouse.unannotated) <- "RNA"
Idents(mouse.unannotated) <- mouse.unannotated$seurat_clusters
sc.config <- createConfig(mouse.unannotated)
makeShinyApp(mouse.unannotated, sc.config, gene.mapping = TRUE,
             shiny.title = "nine_samples")