Importar base de datos

#file.choose()
bd<-read.csv ("/Users/andreapaolasosa/Desktop/DELIVERYPERORMANCE 2.csv") 
bdclientes<-read.csv ("/Users/andreapaolasosa/Desktop/DeliveryPerformancefinal1.csv")

Instalar Librerias

library (tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library (janitor)
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library (dplyr)
#install.packages ("ggplot2")
library (ggplot2)
library (Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## 
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, units

Analizar base de datos

summary (bd)
##     fecha             cliente               dif       
##  Length:52          Length:52          Min.   : 0.00  
##  Class :character   Class :character   1st Qu.: 0.00  
##  Mode  :character   Mode  :character   Median : 0.00  
##                                        Mean   :16.07  
##                                        3rd Qu.:29.38  
##                                        Max.   :71.25
str (bd)
## 'data.frame':    52 obs. of  3 variables:
##  $ fecha  : chr  "31/07/21" "31/07/21" "31/07/21" "31/07/21" ...
##  $ cliente: chr  "PRINTEL " "MAHLE" "MAGNA" "VARROC" ...
##  $ dif    : num  4.9 15.7 0 0 27.7 ...
names(bd)<-c('FECHA', 'CLIENTE', 'DIFERENCIA' )

Tipos de variables

Variable<-c("FECHA","CLIENTE","DIFERENCIA")
Type<-c("qualitative (ordinal)", "qualitative(nominal)", "quantitative (continuous)")  
table<-data.frame(Variable,Type)
knitr::kable(table)
Variable Type
FECHA qualitative (ordinal)
CLIENTE qualitative(nominal)
DIFERENCIA quantitative (continuous)

Limpieza de base de datos

Eliminar NA’s y sustituir con 0’s

sum(is.na(bd))
## [1] 0
bd[is.na(bd)]<-0


bd1<-bd
bd1<-as.data.frame(bd1) 
bd1$FECHA<-as.Date(bd1$FECHA,format="%d/%m/%Y") 
bd1$CLIENTE<-as.factor(bd1$CLIENTE) 
tabyl(bd1, FECHA, CLIENTE)
##       FECHA MAGNA MAHLE PRINTEL  VARROC
##  0021-07-31     1     1        1      1
##  0021-08-31     1     1        1      1
##  0021-09-30     1     1        1      1
##  0021-10-31     1     1        1      1
##  0021-11-30     1     1        1      1
##  0021-12-31     1     1        1      1
##  0022-01-31     1     1        1      1
##  0022-02-28     1     1        1      1
##  0022-03-31     1     1        1      1
##  0022-04-30     1     1        1      1
##  0022-05-31     1     1        1      1
##  0022-06-30     1     1        1      1
##  0022-07-31     1     1        1      1
tabyl(bd1, FECHA, DIFERENCIA)
##       FECHA 0 1.6 10.92 15.7 18.41 27.7 28.77 31.21 33.24 4.9 41.65 46.27 50.65
##  0021-07-31 2   0     0    1     0    0     0     0     0   1     0     0     0
##  0021-08-31 2   0     0    0     0    1     0     0     0   0     0     0     0
##  0021-09-30 2   0     0    0     0    0     0     0     0   0     0     0     0
##  0021-10-31 3   0     0    0     0    0     0     0     0   0     0     0     0
##  0021-11-30 2   0     1    0     0    0     0     0     0   0     0     0     0
##  0021-12-31 2   0     0    0     1    0     0     0     0   0     0     1     0
##  0022-01-31 2   0     0    0     0    0     1     0     0   0     0     0     0
##  0022-02-28 2   0     0    0     0    0     0     1     0   0     0     0     0
##  0022-03-31 3   0     0    0     0    0     0     0     0   0     0     0     0
##  0022-04-30 3   0     0    0     0    0     0     0     0   0     0     0     1
##  0022-05-31 3   0     0    0     0    0     0     0     0   0     0     0     0
##  0022-06-30 3   0     0    0     0    0     0     0     0   0     1     0     0
##  0022-07-31 2   1     0    0     0    0     0     0     1   0     0     0     0
##  56.82 60.1 62.63 63.68 66.44 67.31 67.98 71.25 8.6
##      0    0     0     0     0     0     0     0   0
##      0    0     0     0     0     1     0     0   0
##      1    0     0     0     0     0     0     0   1
##      0    0     0     0     0     0     1     0   0
##      0    1     0     0     0     0     0     0   0
##      0    0     0     0     0     0     0     0   0
##      0    0     0     0     1     0     0     0   0
##      0    0     0     0     0     0     0     1   0
##      0    0     0     1     0     0     0     0   0
##      0    0     0     0     0     0     0     0   0
##      0    0     1     0     0     0     0     0   0
##      0    0     0     0     0     0     0     0   0
##      0    0     0     0     0     0     0     0   0
tibble(bd1)
## # A tibble: 52 × 3
##    FECHA      CLIENTE    DIFERENCIA
##    <date>     <fct>           <dbl>
##  1 0021-07-31 "PRINTEL "        4.9
##  2 0021-07-31 "MAHLE"          15.7
##  3 0021-07-31 "MAGNA"           0  
##  4 0021-07-31 "VARROC"          0  
##  5 0021-08-31 "PRINTEL "       27.7
##  6 0021-08-31 "MAHLE"          67.3
##  7 0021-08-31 "MAGNA"           0  
##  8 0021-08-31 "VARROC"          0  
##  9 0021-09-30 "PRINTEL "        8.6
## 10 0021-09-30 "MAHLE"          56.8
## # … with 42 more rows

Limpieza bdclientes2

bdclientes2<-bdclientes
bdclientes2<-as.data.frame(bdclientes2)
bdclientes2$FECHA<-as.Date(bdclientes2$FECHA,format="%m/%d/%Y")
bdclientes2$PRINTEL<-as.factor(bdclientes2$PRINTEL)
tabyl(bdclientes2, FECHA, PRINTEL)
##       FECHA 0 1.6 4.9 8.6 10.92 18.41 27.7 28.77 31.21
##  2021-01-07 0   0   1   0     0     0    0     0     0
##  2021-01-08 0   0   0   0     0     0    1     0     0
##  2021-01-09 0   0   0   1     0     0    0     0     0
##  2021-01-10 1   0   0   0     0     0    0     0     0
##  2021-01-11 0   0   0   0     1     0    0     0     0
##  2021-01-12 0   0   0   0     0     1    0     0     0
##  2022-01-01 0   0   0   0     0     0    0     1     0
##  2022-01-02 0   0   0   0     0     0    0     0     1
##  2022-01-03 1   0   0   0     0     0    0     0     0
##  2022-01-04 1   0   0   0     0     0    0     0     0
##  2022-01-05 1   0   0   0     0     0    0     0     0
##  2022-01-06 1   0   0   0     0     0    0     0     0
##  2022-01-07 0   1   0   0     0     0    0     0     0
tabyl(bdclientes2, FECHA, MAHLE)
##       FECHA 15.7 33.24 41.65 46.27 50.65 56.82 60.1 62.63 63.68 66.44 67.31
##  2021-01-07    1     0     0     0     0     0    0     0     0     0     0
##  2021-01-08    0     0     0     0     0     0    0     0     0     0     1
##  2021-01-09    0     0     0     0     0     1    0     0     0     0     0
##  2021-01-10    0     0     0     0     0     0    0     0     0     0     0
##  2021-01-11    0     0     0     0     0     0    1     0     0     0     0
##  2021-01-12    0     0     0     1     0     0    0     0     0     0     0
##  2022-01-01    0     0     0     0     0     0    0     0     0     1     0
##  2022-01-02    0     0     0     0     0     0    0     0     0     0     0
##  2022-01-03    0     0     0     0     0     0    0     0     1     0     0
##  2022-01-04    0     0     0     0     1     0    0     0     0     0     0
##  2022-01-05    0     0     0     0     0     0    0     1     0     0     0
##  2022-01-06    0     0     1     0     0     0    0     0     0     0     0
##  2022-01-07    0     1     0     0     0     0    0     0     0     0     0
##  67.98 71.25
##      0     0
##      0     0
##      0     0
##      1     0
##      0     0
##      0     0
##      0     0
##      0     1
##      0     0
##      0     0
##      0     0
##      0     0
##      0     0
tibble(bdclientes2)
## # A tibble: 13 × 5
##    FECHA      PRINTEL MAHLE MAGNA VARROC
##    <date>     <fct>   <dbl> <int>  <int>
##  1 2021-01-07 4.9      15.7     0      0
##  2 2021-01-08 27.7     67.3     0      0
##  3 2021-01-09 8.6      56.8     0      0
##  4 2021-01-10 0        68.0     0      0
##  5 2021-01-11 10.92    60.1     0      0
##  6 2021-01-12 18.41    46.3     0      0
##  7 2022-01-01 28.77    66.4     0      0
##  8 2022-01-02 31.21    71.2     0      0
##  9 2022-01-03 0        63.7     0      0
## 10 2022-01-04 0        50.6     0      0
## 11 2022-01-05 0        62.6     0      0
## 12 2022-01-06 0        41.6     0      0
## 13 2022-01-07 1.6      33.2     0      0

Analisis Profundo de la Base de datos

media_bd <- mean(bd$DIFERENCIA)
media_bd
## [1] 16.07365
median_bd <- median(bd$DIFERENCIA)
median_bd
## [1] 0
mode_bd <- mode(bd$DIFERENCIA)
mode_bd
## [1] "numeric"
hist(bd1$DIFERENCIA) 

Analisis Profundo de la Base de datos BDCLIENTES

media_bdclientes <- mean(bdclientes$PRINTEL)
media_bdclientes
## [1] 10.16231
median_bdclientes <- median(bdclientes$PRINTEL)
median_bdclientes
## [1] 4.9
mode_bdclientes <- mode(bdclientes$PRINTEL)
mode_bdclientes
## [1] "numeric"
media_bdclientes <- mean(bdclientes$MAHLE)
media_bdclientes
## [1] 54.13231
median_bdclientes <- median(bdclientes$MAHLE)
median_bdclientes
## [1] 60.1
mode_bdclientes <- mode(bdclientes$MAHLE)
mode_bdclientes
## [1] "numeric"
bdclientes3 <-bdclientes
bdclientes3 <- subset (bdclientes3, select = -c (MAGNA,VARROC))


hist(bdclientes3$PRINTEL)

hist(bdclientes3$MAHLE)

Graficas

Clientes con los Retrasos mas Altos

ggplot(bd,aes(x=FECHA, y=DIFERENCIA,fill=CLIENTE))+
  geom_bar(stat="identity")+
  geom_hline(yintercept=33,linetype="dashed",color="black")+
  labs(x="Fecha",y="Retraso en Minutos", color="Legend")+
  ggtitle("Retraso en Desempeño de los Clientes")

LS0tCnRpdGxlOiAiRGVsaXZlcnkgUGVyZm9tYW5jZSIKYXV0aG9yOiAiQW5kcmVhIFBhb2xhIFNvc2EgQTAwODI3MzU5IgpkYXRlOiAiMjAyMi0xMC0wNSIKb3V0cHV0OgogICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCgoKCiMjIEltcG9ydGFyIGJhc2UgZGUgZGF0b3MKYGBge3J9CiNmaWxlLmNob29zZSgpCmJkPC1yZWFkLmNzdiAoIi9Vc2Vycy9hbmRyZWFwYW9sYXNvc2EvRGVza3RvcC9ERUxJVkVSWVBFUk9STUFOQ0UgMi5jc3YiKSAKYmRjbGllbnRlczwtcmVhZC5jc3YgKCIvVXNlcnMvYW5kcmVhcGFvbGFzb3NhL0Rlc2t0b3AvRGVsaXZlcnlQZXJmb3JtYW5jZWZpbmFsMS5jc3YiKQpgYGAKCgojIyBJbnN0YWxhciBMaWJyZXJpYXMKYGBge3J9CmxpYnJhcnkgKHRpZHl2ZXJzZSkKbGlicmFyeSAoamFuaXRvcikKbGlicmFyeSAoZHBseXIpCiNpbnN0YWxsLnBhY2thZ2VzICgiZ2dwbG90MiIpCmxpYnJhcnkgKGdncGxvdDIpCmxpYnJhcnkgKEhtaXNjKQpgYGAKCgojIyBBbmFsaXphciBiYXNlIGRlIGRhdG9zCmBgYHtyfQpzdW1tYXJ5IChiZCkKc3RyIChiZCkKCgpuYW1lcyhiZCk8LWMoJ0ZFQ0hBJywgJ0NMSUVOVEUnLCAnRElGRVJFTkNJQScgKQpgYGAKCgojIyBUaXBvcyBkZSB2YXJpYWJsZXMKYGBge3J9ClZhcmlhYmxlPC1jKCJGRUNIQSIsIkNMSUVOVEUiLCJESUZFUkVOQ0lBIikKVHlwZTwtYygicXVhbGl0YXRpdmUgKG9yZGluYWwpIiwgInF1YWxpdGF0aXZlKG5vbWluYWwpIiwgInF1YW50aXRhdGl2ZSAoY29udGludW91cykiKSAgCnRhYmxlPC1kYXRhLmZyYW1lKFZhcmlhYmxlLFR5cGUpCmtuaXRyOjprYWJsZSh0YWJsZSkKYGBgCgoKIyMgTGltcGllemEgZGUgYmFzZSBkZSBkYXRvcwojIyMgIEVsaW1pbmFyIE5BJ3MgeSBzdXN0aXR1aXIgY29uIDAncwpgYGB7cn0Kc3VtKGlzLm5hKGJkKSkKYmRbaXMubmEoYmQpXTwtMAoKCmJkMTwtYmQKYmQxPC1hcy5kYXRhLmZyYW1lKGJkMSkgCmJkMSRGRUNIQTwtYXMuRGF0ZShiZDEkRkVDSEEsZm9ybWF0PSIlZC8lbS8lWSIpIApiZDEkQ0xJRU5URTwtYXMuZmFjdG9yKGJkMSRDTElFTlRFKSAKdGFieWwoYmQxLCBGRUNIQSwgQ0xJRU5URSkKdGFieWwoYmQxLCBGRUNIQSwgRElGRVJFTkNJQSkKdGliYmxlKGJkMSkKCgpgYGAKCiMjIExpbXBpZXphIGJkY2xpZW50ZXMyCmBgYHtyfQpiZGNsaWVudGVzMjwtYmRjbGllbnRlcwpiZGNsaWVudGVzMjwtYXMuZGF0YS5mcmFtZShiZGNsaWVudGVzMikKYmRjbGllbnRlczIkRkVDSEE8LWFzLkRhdGUoYmRjbGllbnRlczIkRkVDSEEsZm9ybWF0PSIlbS8lZC8lWSIpCmJkY2xpZW50ZXMyJFBSSU5URUw8LWFzLmZhY3RvcihiZGNsaWVudGVzMiRQUklOVEVMKQp0YWJ5bChiZGNsaWVudGVzMiwgRkVDSEEsIFBSSU5URUwpCnRhYnlsKGJkY2xpZW50ZXMyLCBGRUNIQSwgTUFITEUpCnRpYmJsZShiZGNsaWVudGVzMikKYGBgCgoKIyMgQW5hbGlzaXMgUHJvZnVuZG8gZGUgbGEgQmFzZSBkZSBkYXRvcwpgYGB7cn0KbWVkaWFfYmQgPC0gbWVhbihiZCRESUZFUkVOQ0lBKQptZWRpYV9iZAoKbWVkaWFuX2JkIDwtIG1lZGlhbihiZCRESUZFUkVOQ0lBKQptZWRpYW5fYmQKCm1vZGVfYmQgPC0gbW9kZShiZCRESUZFUkVOQ0lBKQptb2RlX2JkCgoKCmhpc3QoYmQxJERJRkVSRU5DSUEpIApgYGAKCgojIyBBbmFsaXNpcyBQcm9mdW5kbyBkZSBsYSBCYXNlIGRlIGRhdG9zIEJEQ0xJRU5URVMKYGBge3J9CgptZWRpYV9iZGNsaWVudGVzIDwtIG1lYW4oYmRjbGllbnRlcyRQUklOVEVMKQptZWRpYV9iZGNsaWVudGVzCgptZWRpYW5fYmRjbGllbnRlcyA8LSBtZWRpYW4oYmRjbGllbnRlcyRQUklOVEVMKQptZWRpYW5fYmRjbGllbnRlcwoKbW9kZV9iZGNsaWVudGVzIDwtIG1vZGUoYmRjbGllbnRlcyRQUklOVEVMKQptb2RlX2JkY2xpZW50ZXMKCm1lZGlhX2JkY2xpZW50ZXMgPC0gbWVhbihiZGNsaWVudGVzJE1BSExFKQptZWRpYV9iZGNsaWVudGVzCgptZWRpYW5fYmRjbGllbnRlcyA8LSBtZWRpYW4oYmRjbGllbnRlcyRNQUhMRSkKbWVkaWFuX2JkY2xpZW50ZXMKCm1vZGVfYmRjbGllbnRlcyA8LSBtb2RlKGJkY2xpZW50ZXMkTUFITEUpCm1vZGVfYmRjbGllbnRlcwoKYmRjbGllbnRlczMgPC1iZGNsaWVudGVzCmJkY2xpZW50ZXMzIDwtIHN1YnNldCAoYmRjbGllbnRlczMsIHNlbGVjdCA9IC1jIChNQUdOQSxWQVJST0MpKQoKCmhpc3QoYmRjbGllbnRlczMkUFJJTlRFTCkKaGlzdChiZGNsaWVudGVzMyRNQUhMRSkKYGBgCgoKIyMgR3JhZmljYXMKCiMjIyBDbGllbnRlcyBjb24gbG9zIFJldHJhc29zIG1hcyBBbHRvcwpgYGB7cn0KZ2dwbG90KGJkLGFlcyh4PUZFQ0hBLCB5PURJRkVSRU5DSUEsZmlsbD1DTElFTlRFKSkrCiAgZ2VvbV9iYXIoc3RhdD0iaWRlbnRpdHkiKSsKICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQ9MzMsbGluZXR5cGU9ImRhc2hlZCIsY29sb3I9ImJsYWNrIikrCiAgbGFicyh4PSJGZWNoYSIseT0iUmV0cmFzbyBlbiBNaW51dG9zIiwgY29sb3I9IkxlZ2VuZCIpKwogIGdndGl0bGUoIlJldHJhc28gZW4gRGVzZW1wZcOxbyBkZSBsb3MgQ2xpZW50ZXMiKQpgYGAKCgogIAogIAogIA==