This is an R Markdown document created on
Sys.Date()
## [1] "2022-10-05"
We will plot Brisket Temperatures over time (measured in minutes) for four different cooks.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(plotly)
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
bdata <- read.csv("~/BData.txt")
bdata$DateTime <- as.POSIXct(bdata$DateTime)
startTimes <- summarize( group_by(bdata,Name), start = min(DateTime))
## `summarise()` ungrouping output (override with `.groups` argument)
bdata <- inner_join(bdata,startTimes)
## Joining, by = "Name"
bdata$time_in_minutes <- difftime(bdata$DateTime, bdata$start,units="mins")
bdata<-rename(bdata,MeatTemp_degF=MeatTemp,GrillTemp_degF=GrillTemp)
#bdata$Time <- (bdata$DateTime)$min
p <- plot_ly(bdata,x= ~time_in_minutes,y=~MeatTemp_degF)
#p1 <- add_markers(p, symbol=~Name,size=8,color=~GrillTemp_degF,symbols=c("circle","triangle-up","square","diamond","pentagon"))
#p1 <- add_paths(p1, linetype=~Phase, color=I("black")) #="solid",width=as.integer(as.factor(bdata$Phase))*4)
p2 <- add_markers(p, symbol=~Phase,size=10,color=~GrillTemp_degF,symbols=c("circle","diamond"),colors="YlOrRd")
p3 <- add_paths(p2, linetype=~Name) #, color=~Name, colors="Greys") #="solid",width=as.integer(as.factor(bdata$Phase))*4)
#p1
p3