Instalar paquetes y llamar librerĂ­as

#install.packages("forecast")
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Crear serie de tiempo

produccion<-c(19,18,15,20,18,22,20)
produccion_st<-ts(data=produccion,start=c(2022,2),frequency=12)
produccion
## [1] 19 18 15 20 18 22 20

ARIMA: Modelo Autorregresivoo Integrado de Media MĂ³vil (AutoRegressive Integrated Moving Average).
ARIMA: (p,d,q).
p=orden de auto-regresiĂ³n.
d=orden de integraciĂ³n (diferenciaciĂ³n).
q=orden del promedio mĂ³vil.

¿CuĂ¡ndo se usa?
Cuando las estimaciones futuras se explican por los datos del pasado y no por las variables independientes.

Ejemplo: tipo de cambio.

modelo<-auto.arima(produccion_st)
modelo
## Series: produccion_st 
## ARIMA(0,0,0) with non-zero mean 
## 
## Coefficients:
##          mean
##       18.8571
## s.e.   0.7674
## 
## sigma^2 = 4.81:  log likelihood = -14.89
## AIC=33.78   AICc=36.78   BIC=33.67
pronostico<-forecast(modelo,level=c(95),h=5)
pronostico
##          Point Forecast    Lo 95    Hi 95
## Sep 2022       18.85714 14.55882 23.15547
## Oct 2022       18.85714 14.55882 23.15547
## Nov 2022       18.85714 14.55882 23.15547
## Dec 2022       18.85714 14.55882 23.15547
## Jan 2023       18.85714 14.55882 23.15547
plot(pronostico)

LS0tCnRpdGxlOiA8c3BhbiBzdHlsZT0iY29sb3I6bGlnaHRibHVlIj4qKlByb27Ds3N0aWNvcyoqCmF1dGhvcjogIkVsZW5hVmVsYV9BMDEyODM1MzUiCmRhdGU6ICIyMDIyLTEwLTA0IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgdGhlbWU6IHVuaXRlZAogICAgaGlnaGxpZ2h0OiB0YW5nbwogICAgY29kZV9kb3dubG9hZDogdHJ1ZQotLS0KCkluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMKYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJmb3JlY2FzdCIpCmxpYnJhcnkoZm9yZWNhc3QpCmBgYAoKIyMjICoqQ3JlYXIgc2VyaWUgZGUgdGllbXBvKioKYGBge3J9CnByb2R1Y2Npb248LWMoMTksMTgsMTUsMjAsMTgsMjIsMjApCnByb2R1Y2Npb25fc3Q8LXRzKGRhdGE9cHJvZHVjY2lvbixzdGFydD1jKDIwMjIsMiksZnJlcXVlbmN5PTEyKQpwcm9kdWNjaW9uCmBgYAoKQVJJTUE6IE1vZGVsbyBBdXRvcnJlZ3Jlc2l2b28gSW50ZWdyYWRvIGRlIE1lZGlhIE3Ds3ZpbCAoQXV0b1JlZ3Jlc3NpdmUgSW50ZWdyYXRlZCBNb3ZpbmcgQXZlcmFnZSkuICAKQVJJTUE6IChwLGQscSkuICAKcD1vcmRlbiBkZSBhdXRvLXJlZ3Jlc2nDs24uICAKZD1vcmRlbiBkZSBpbnRlZ3JhY2nDs24gKGRpZmVyZW5jaWFjacOzbikuICAKcT1vcmRlbiBkZWwgcHJvbWVkaW8gbcOzdmlsLiAgCgrCv0N1w6FuZG8gc2UgdXNhPyAgCkN1YW5kbyBsYXMgZXN0aW1hY2lvbmVzIGZ1dHVyYXMgc2UgZXhwbGljYW4gcG9yIGxvcyBkYXRvcyBkZWwgcGFzYWRvIHkgbm8gcG9yIGxhcyB2YXJpYWJsZXMgaW5kZXBlbmRpZW50ZXMuICAgCgpFamVtcGxvOiB0aXBvIGRlIGNhbWJpby4gCgpgYGB7cn0KbW9kZWxvPC1hdXRvLmFyaW1hKHByb2R1Y2Npb25fc3QpCm1vZGVsbwpgYGAKYGBge3J9CnByb25vc3RpY288LWZvcmVjYXN0KG1vZGVsbyxsZXZlbD1jKDk1KSxoPTUpCnByb25vc3RpY28KcGxvdChwcm9ub3N0aWNvKQpgYGAKCgoKCgoKCg==