Do you remember that joke I told you about my spine?
It was about a weak back!
Formulate differential equation for equilibrium temperature inside a cylinder as function of distance from center.
Using the balance law, the word equation for our assumptions and compartment diagram is shown below.
\[ \small{ \begin{aligned} \begin{Bmatrix} \mathrm{change \, in \, heat } \\ \mathrm{content \, of \, shell } \end{Bmatrix} &= \begin{Bmatrix} \mathrm{heat \, conducted } \\ \mathrm{into \, shell } \end{Bmatrix} - \begin{Bmatrix} \mathrm{heat \, conducted } \\ \mathrm{out \, of \, shell } \end{Bmatrix} \\ & = 0 \end{aligned} } \]
\[ \small{ J(r) = -k\frac{dU(r)}{dr}} \]
\[ \small{ \begin{aligned} \begin{Bmatrix} \mathrm{change \, in \, heat } \\ \mathrm{content \, of \, shell } \end{Bmatrix} &= \begin{Bmatrix} \mathrm{heat \, conducted } \\ \mathrm{into \, shell } \end{Bmatrix} - \begin{Bmatrix} \mathrm{heat \, conducted } \\ \mathrm{out \, of \, shell } \end{Bmatrix} \\ \\ 0 & = J(r)A(r) - J(r+ \Delta r)A(r+ \Delta r) \end{aligned} } \]
\[ \small{ 0 = \lim_{h \rightarrow 0} \frac{J(r+ h)A(r+h) - J(r)A(r)}{h} = \frac{d}{dr}\left[J(r)A(r)\right] } \]
From previous slide:
\[ \small{ \frac{d}{dr}\left[J(r)A(r)\right] = 0 } \]
Since \( \small{A(r) = 2\pi rl} \), we have
\[ \small{ 2\pi l\frac{d}{dr}\left[rJ(r)\right] = 0 } \]
Using Fourier's law \( \small{J(r) = -kU'(r)} \):
\[ \small{ \frac{d}{dr}\left(r\frac{dU}{dr}\right) = 0 } \]
From previous slide,
\[ \small{ \frac{d}{dr}\left(r\frac{dU}{dr}\right) = 0 } \]
Using the product rule, we obtain
\[ \small{r \frac{d^2 U}{dr^2} + \frac{d U}{dr} = 0 } \]
\[ \small{r \frac{d^2 U}{dr^2} + \frac{d U}{dr} = 0 } \]