Probabilidad: estudio de azar y la incertidumbre en cualquier situation en la cual varios posibles sucesos pueden ocurrir

Es un valor entre 0 (imposible) y 1 (seguro)

Ejemplo: la probabilidad de que llueva hoy es de 0.70 (70%)

Experimento: cualquier accion cuyo resultado esta sujeto a la incertidumbre.

Ejemplo: lanzar una moneda al aire

Experimento: lanzar un dado

#install.packages("dice")
library(dice)
## Loading required package: gtools
#install.packages("gtools")
library(gtools)

#install.packages("MASS")
library(MASS)

Probabilidad de obtener un 5

## Probabilidad de obtener un 5 
un_seis <- getEventProb(nrolls = 1, ndicePerRoll = 1, nsidesPerDie = 6, eventList = list(6))
un_seis
## [1] 0.1666667
fractions(un_seis)
## [1] 1/6

Probabilidad de sumar un 5 al lanzar 2 dados

un_cinco <- getEventProb(nrolls = 2, ndicePerRoll = 1, nsidesPerDie = 6, eventList = list(5))
un_cinco
## [1] 0.3055556
fractions(un_cinco)
## [1] 11/36

Probabilidad de sumar un 5 al lanzar 2 dados

un_cinco <- getEventProb(nrolls = 2, ndicePerRoll = 1, nsidesPerDie = 6, eventList = list(5))
un_cinco
## [1] 0.3055556
fractions(un_cinco)
## [1] 11/36

Probabilidad de obtener un 5 en dos lanzamientos consecutivos

dos_cinco <- getEventProb(nrolls = 2, ndicePerRoll = 1, nsidesPerDie = 6, eventList = list(5,5))
dos_cinco
## [1] 0.02777778
fractions(dos_cinco)
## [1] 1/36

Que numero es mas probable de alcanzar al lanzar dos dados?

sumar_dos <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(2))
sumar_tres <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(3))
sumar_cuatro <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(4))
sumar_cinco <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(5))
sumar_seis <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(6))
sumar_siete <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(7))
sumar_ocho <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(8))
sumar_nueve <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(9))
sumar_diez <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(10))
sumar_once <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(11))
sumar_doce <- getEventProb(nrolls = 1, ndicePerRoll = 2, nsidesPerDie = 6, eventList = list(12))
suma <- c(2,3,4,5,6,7,8,9,10,11,12)
probabilidad <- c(sumar_dos,sumar_tres, sumar_cuatro, sumar_cinco, sumar_seis, sumar_siete, sumar_ocho, sumar_nueve, sumar_diez, sumar_once, sumar_doce)
tabla <- cbind(suma, probabilidad) 
barplot(probabilidad, names.arg =suma, main = "Probabilidad", xlab = "suma de 2 dados", col = "Tomato" )

EXPERIMENTO : MANO DE POKER

#install.packages("tidyverse")
library(purrr)

Crear baraja inglesa

numero <- c (2,3,4,5,6,7,8,9,"D", "J", "Q", "K", "A")
numeros <- rep(numero, 4)
palo <- c ("T", "C", "P", "D")
palos <-rep(palo, 13)
baraja <- data.frame(numeros, palos)

Crear el mazo de barajas

mazo <- apply(format(baraja),1, paste, collapse="")
mazo
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
## "2T" "3C" "4P" "5D" "6T" "7C" "8P" "9D" "DT" "JC" "QP" "KD" "AT" "2C" "3P" "4D" 
##   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32 
## "5T" "6C" "7P" "8D" "9T" "DC" "JP" "QD" "KT" "AC" "2P" "3D" "4T" "5C" "6P" "7D" 
##   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48 
## "8T" "9C" "DP" "JD" "QT" "KC" "AP" "2D" "3T" "4C" "5P" "6D" "7T" "8C" "9P" "DD" 
##   49   50   51   52 
## "JT" "QC" "KP" "AD"

Crear la mano de cartas

mano <- function(n) sample(mazo, n, rep=FALSE)
mi_mano <- mano (5)
mi_mano
##   34   42   50    9   15 
## "9C" "4C" "QC" "DT" "3P"
LS0tCnRpdGxlOiAiUHJvYmFiaWxpZGFkIgphdXRob3I6ICJFbWlsaW8gT2x2ZXJhIgpkYXRlOiAiMjAyMi0xMC0wNCIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICB0b2M6IHRydWUKICAgdG9jX2Zsb2F0OiB0cnVlCiAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCgojIDxpbWcgc3JjPSIvVXNlcnMvZW1pbGlvb2x2ZXJhL0Rlc2t0b3AvUG9ydGFmb2xpbyBkZWwgbW9kdWxvL3Byb2JhYmlsaWRhZC5qcGVnIj4gCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWUiPiAqKlByb2JhYmlsaWRhZDogZXN0dWRpbyBkZSBhemFyIHkgbGEgaW5jZXJ0aWR1bWJyZSBlbiBjdWFscXVpZXIgc2l0dWF0aW9uIGVuIGxhIGN1YWwgdmFyaW9zIHBvc2libGVzIHN1Y2Vzb3MgcHVlZGVuIG9jdXJyaXIqKjwvc3Bhbj4KCioqRXMgdW4gdmFsb3IgZW50cmUgMCAoaW1wb3NpYmxlKSB5IDEgKHNlZ3VybykqKgoKKipFamVtcGxvOioqIGxhIHByb2JhYmlsaWRhZCBkZSBxdWUgbGx1ZXZhIGhveSBlcyBkZSAwLjcwICg3MCUpCgoqKkV4cGVyaW1lbnRvOioqIGN1YWxxdWllciBhY2Npb24gY3V5byByZXN1bHRhZG8gZXN0YSBzdWpldG8gYSBsYSBpbmNlcnRpZHVtYnJlLgoKKipFamVtcGxvOioqIGxhbnphciB1bmEgbW9uZWRhIGFsIGFpcmUKCiMjIEV4cGVyaW1lbnRvOiBsYW56YXIgdW4gZGFkbwpgYGB7cn0KI2luc3RhbGwucGFja2FnZXMoImRpY2UiKQpsaWJyYXJ5KGRpY2UpCgojaW5zdGFsbC5wYWNrYWdlcygiZ3Rvb2xzIikKbGlicmFyeShndG9vbHMpCgojaW5zdGFsbC5wYWNrYWdlcygiTUFTUyIpCmxpYnJhcnkoTUFTUykKYGBgCgojIyBQcm9iYWJpbGlkYWQgZGUgb2J0ZW5lciB1biA1IApgYGB7cn0KIyMgUHJvYmFiaWxpZGFkIGRlIG9idGVuZXIgdW4gNSAKdW5fc2VpcyA8LSBnZXRFdmVudFByb2IobnJvbGxzID0gMSwgbmRpY2VQZXJSb2xsID0gMSwgbnNpZGVzUGVyRGllID0gNiwgZXZlbnRMaXN0ID0gbGlzdCg2KSkKdW5fc2VpcwpmcmFjdGlvbnModW5fc2VpcykKCmBgYAoKIyMgUHJvYmFiaWxpZGFkIGRlIHN1bWFyIHVuIDUgYWwgbGFuemFyIDIgZGFkb3MKYGBge3J9CnVuX2NpbmNvIDwtIGdldEV2ZW50UHJvYihucm9sbHMgPSAyLCBuZGljZVBlclJvbGwgPSAxLCBuc2lkZXNQZXJEaWUgPSA2LCBldmVudExpc3QgPSBsaXN0KDUpKQp1bl9jaW5jbwpmcmFjdGlvbnModW5fY2luY28pCgpgYGAKCiMjIFByb2JhYmlsaWRhZCBkZSBzdW1hciB1biA1IGFsIGxhbnphciAyIGRhZG9zCmBgYHtyfQoKdW5fY2luY28gPC0gZ2V0RXZlbnRQcm9iKG5yb2xscyA9IDIsIG5kaWNlUGVyUm9sbCA9IDEsIG5zaWRlc1BlckRpZSA9IDYsIGV2ZW50TGlzdCA9IGxpc3QoNSkpCnVuX2NpbmNvCmZyYWN0aW9ucyh1bl9jaW5jbykKCmBgYAoKCiMjIFByb2JhYmlsaWRhZCBkZSBvYnRlbmVyIHVuIDUgZW4gZG9zIGxhbnphbWllbnRvcyBjb25zZWN1dGl2b3MKYGBge3J9CmRvc19jaW5jbyA8LSBnZXRFdmVudFByb2IobnJvbGxzID0gMiwgbmRpY2VQZXJSb2xsID0gMSwgbnNpZGVzUGVyRGllID0gNiwgZXZlbnRMaXN0ID0gbGlzdCg1LDUpKQpkb3NfY2luY28KZnJhY3Rpb25zKGRvc19jaW5jbykKYGBgCgojIyBRdWUgbnVtZXJvIGVzIG1hcyBwcm9iYWJsZSBkZSBhbGNhbnphciBhbCBsYW56YXIgZG9zIGRhZG9zPwpgYGB7cn0Kc3VtYXJfZG9zIDwtIGdldEV2ZW50UHJvYihucm9sbHMgPSAxLCBuZGljZVBlclJvbGwgPSAyLCBuc2lkZXNQZXJEaWUgPSA2LCBldmVudExpc3QgPSBsaXN0KDIpKQpzdW1hcl90cmVzIDwtIGdldEV2ZW50UHJvYihucm9sbHMgPSAxLCBuZGljZVBlclJvbGwgPSAyLCBuc2lkZXNQZXJEaWUgPSA2LCBldmVudExpc3QgPSBsaXN0KDMpKQpzdW1hcl9jdWF0cm8gPC0gZ2V0RXZlbnRQcm9iKG5yb2xscyA9IDEsIG5kaWNlUGVyUm9sbCA9IDIsIG5zaWRlc1BlckRpZSA9IDYsIGV2ZW50TGlzdCA9IGxpc3QoNCkpCnN1bWFyX2NpbmNvIDwtIGdldEV2ZW50UHJvYihucm9sbHMgPSAxLCBuZGljZVBlclJvbGwgPSAyLCBuc2lkZXNQZXJEaWUgPSA2LCBldmVudExpc3QgPSBsaXN0KDUpKQpzdW1hcl9zZWlzIDwtIGdldEV2ZW50UHJvYihucm9sbHMgPSAxLCBuZGljZVBlclJvbGwgPSAyLCBuc2lkZXNQZXJEaWUgPSA2LCBldmVudExpc3QgPSBsaXN0KDYpKQpzdW1hcl9zaWV0ZSA8LSBnZXRFdmVudFByb2IobnJvbGxzID0gMSwgbmRpY2VQZXJSb2xsID0gMiwgbnNpZGVzUGVyRGllID0gNiwgZXZlbnRMaXN0ID0gbGlzdCg3KSkKc3VtYXJfb2NobyA8LSBnZXRFdmVudFByb2IobnJvbGxzID0gMSwgbmRpY2VQZXJSb2xsID0gMiwgbnNpZGVzUGVyRGllID0gNiwgZXZlbnRMaXN0ID0gbGlzdCg4KSkKc3VtYXJfbnVldmUgPC0gZ2V0RXZlbnRQcm9iKG5yb2xscyA9IDEsIG5kaWNlUGVyUm9sbCA9IDIsIG5zaWRlc1BlckRpZSA9IDYsIGV2ZW50TGlzdCA9IGxpc3QoOSkpCnN1bWFyX2RpZXogPC0gZ2V0RXZlbnRQcm9iKG5yb2xscyA9IDEsIG5kaWNlUGVyUm9sbCA9IDIsIG5zaWRlc1BlckRpZSA9IDYsIGV2ZW50TGlzdCA9IGxpc3QoMTApKQpzdW1hcl9vbmNlIDwtIGdldEV2ZW50UHJvYihucm9sbHMgPSAxLCBuZGljZVBlclJvbGwgPSAyLCBuc2lkZXNQZXJEaWUgPSA2LCBldmVudExpc3QgPSBsaXN0KDExKSkKc3VtYXJfZG9jZSA8LSBnZXRFdmVudFByb2IobnJvbGxzID0gMSwgbmRpY2VQZXJSb2xsID0gMiwgbnNpZGVzUGVyRGllID0gNiwgZXZlbnRMaXN0ID0gbGlzdCgxMikpCnN1bWEgPC0gYygyLDMsNCw1LDYsNyw4LDksMTAsMTEsMTIpCnByb2JhYmlsaWRhZCA8LSBjKHN1bWFyX2RvcyxzdW1hcl90cmVzLCBzdW1hcl9jdWF0cm8sIHN1bWFyX2NpbmNvLCBzdW1hcl9zZWlzLCBzdW1hcl9zaWV0ZSwgc3VtYXJfb2Nobywgc3VtYXJfbnVldmUsIHN1bWFyX2RpZXosIHN1bWFyX29uY2UsIHN1bWFyX2RvY2UpCnRhYmxhIDwtIGNiaW5kKHN1bWEsIHByb2JhYmlsaWRhZCkgCmJhcnBsb3QocHJvYmFiaWxpZGFkLCBuYW1lcy5hcmcgPXN1bWEsIG1haW4gPSAiUHJvYmFiaWxpZGFkIiwgeGxhYiA9ICJzdW1hIGRlIDIgZGFkb3MiLCBjb2wgPSAiVG9tYXRvIiApCmBgYAoKCiMjIEVYUEVSSU1FTlRPIDogTUFOTyBERSBQT0tFUgpgYGB7cn0KI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpCmxpYnJhcnkocHVycnIpCgpgYGAKIyA8aW1nIHNyYz0iL1VzZXJzL2VtaWxpb29sdmVyYS9EZXNrdG9wL1BvcnRhZm9saW8gZGVsIG1vZHVsby9tYW5vcG9rZXIuanBlZyI+IAojIyBDcmVhciBiYXJhamEgaW5nbGVzYQpgYGB7cn0KbnVtZXJvIDwtIGMgKDIsMyw0LDUsNiw3LDgsOSwiRCIsICJKIiwgIlEiLCAiSyIsICJBIikKbnVtZXJvcyA8LSByZXAobnVtZXJvLCA0KQpwYWxvIDwtIGMgKCJUIiwgIkMiLCAiUCIsICJEIikKcGFsb3MgPC1yZXAocGFsbywgMTMpCmJhcmFqYSA8LSBkYXRhLmZyYW1lKG51bWVyb3MsIHBhbG9zKQpgYGAKCiMjIENyZWFyIGVsIG1hem8gZGUgYmFyYWphcwpgYGB7cn0KbWF6byA8LSBhcHBseShmb3JtYXQoYmFyYWphKSwxLCBwYXN0ZSwgY29sbGFwc2U9IiIpCm1hem8KYGBgCgojIyBDcmVhciBsYSBtYW5vIGRlIGNhcnRhcwpgYGB7cn0KbWFubyA8LSBmdW5jdGlvbihuKSBzYW1wbGUobWF6bywgbiwgcmVwPUZBTFNFKQptaV9tYW5vIDwtIG1hbm8gKDUpCm1pX21hbm8KYGBgCgoK