1 ADD RE_IGNITE

pvalue.func <- function(x, ...) {
    # Construct vectors of data y, and groups (strata) g
    y <- unlist(x)
    g <- factor(rep(1:length(x), times=sapply(x, length)))
    if (is.numeric(y)) {
        test <- aov(y ~ g)
        p<-summary(test)[[1]][1,5] 

    } else {
        # For categorical variables, perform a chi-squared test of independence
        p <- chisq.test(table(y, g))$p.value
    }
    # Format the p-value, using an HTML entity for the less-than sign.
    # The initial empty string places the output on the line below the variable label.
    c("", sub("<", "&lt;", format.pval(p, digits=3, eps=0.001)))
}
merged.df<-readr::read_csv("/Volumes/IGNITE_Admin/R_IGNITE/BASELINE_merged.csv")
merged.df$race.factor<-if_else(str_detect(merged.df$screen_race.factor, "White"), "White", "")
merged.df$race.factor<-if_else(str_detect(merged.df$screen_race.factor, "Black"), "Black", merged.df$race.factor)
merged.df$race.factor<-if_else(merged.df$race.factor=="", "Other", merged.df$race.factor)
merged.df$race.factor<-factor(merged.df$race.factor, levels=c("White", "Black", "Other"))
merged.df$sittime_total<-merged.df$sittime_weekend_total+merged.df$sittime_weekday_total_min

1.1 screen_mod_confirm.factor

merged.df$screen_mod_confirm.factor<-if_else(is.na(merged.df$screen_mod_confirm.factor), "No", as.character(merged.df$screen_mod_confirm.factor))

table1::table1(~screen_gender.factor+race.factor+season+dur_day_total_MODVIG_min_pla+vo2sum_peak_ml+sittime_total|screen_site.factor+screen_mod_confirm.factor  ,data= merged.df, overall=F,  extra.col=list(`P-value`=pvalue.func))
Kansas
Northeastern
Pitt
No
(N=202)
Yes
(N=12)
No
(N=209)
Yes
(N=6)
No
(N=215)
Yes
(N=4)
P-value
screen_gender.factor
Female 146 (72.3%) 9 (75.0%) 144 (68.9%) 4 (66.7%) 154 (71.6%) 4 (100%) 0.787
Male 56 (27.7%) 3 (25.0%) 65 (31.1%) 2 (33.3%) 61 (28.4%) 0 (0%)
race.factor
White 170 (84.2%) 10 (83.3%) 148 (70.8%) 4 (66.7%) 158 (73.5%) 1 (25.0%) <0.001
Black 23 (11.4%) 1 (8.3%) 42 (20.1%) 2 (33.3%) 51 (23.7%) 3 (75.0%)
Other 9 (4.5%) 1 (8.3%) 19 (9.1%) 0 (0%) 6 (2.8%) 0 (0%)
season
Fall 65 (32.2%) 4 (33.3%) 57 (27.3%) 1 (16.7%) 71 (33.0%) 2 (50.0%) 0.913
Spring 44 (21.8%) 2 (16.7%) 40 (19.1%) 1 (16.7%) 49 (22.8%) 0 (0%)
Summer 51 (25.2%) 4 (33.3%) 42 (20.1%) 2 (33.3%) 41 (19.1%) 0 (0%)
Winter 37 (18.3%) 2 (16.7%) 46 (22.0%) 1 (16.7%) 47 (21.9%) 1 (25.0%)
Missing 5 (2.5%) 0 (0%) 24 (11.5%) 1 (16.7%) 7 (3.3%) 1 (25.0%)
dur_day_total_MODVIG_min_pla
Mean (SD) 51.2 (29.3) 61.6 (38.1) 50.1 (30.5) 50.4 (12.2) 46.5 (28.9) 51.3 (20.9) 0.436
Median [Min, Max] 45.3 [4.90, 166] 51.0 [23.8, 146] 43.6 [3.67, 188] 56.7 [36.5, 63.5] 38.4 [3.01, 182] 43.5 [35.5, 75.1]
Missing 5 (2.5%) 0 (0%) 24 (11.5%) 1 (16.7%) 7 (3.3%) 1 (25.0%)
vo2sum_peak_ml
Mean (SD) 22.2 (5.24) 24.6 (3.83) 22.2 (5.04) 23.4 (2.45) 20.6 (4.81) 20.0 (5.47) 0.00133
Median [Min, Max] 21.7 [12.1, 39.5] 24.7 [18.6, 32.0] 22.0 [11.5, 34.1] 23.8 [18.7, 25.9] 20.0 [10.1, 38.1] 19.3 [14.5, 26.8]
sittime_total
Mean (SD) 627 (254) 586 (231) 683 (289) 801 (309) 688 (333) 667 (134) 0.197
Median [Min, Max] 581 [107, 1540] 565 [213, 978] 641 [166, 1640] 675 [548, 1290] 615 [184, 3170] 641 [536, 851]
Missing 0 (0%) 0 (0%) 0 (0%) 1 (16.7%) 0 (0%) 0 (0%)

1.2 rand_treat.factor

table1::table1(~screen_mod_confirm.factor+race.factor+season+dur_day_total_MODVIG_min_pla+vo2sum_peak_ml+sittime_total+dur_day_total_IN_min_pla+bmi|rand_treat.factor  ,data= merged.df, overall=F,  extra.col=list(`P-value`=pvalue.func))
Group 1: 150 mins of aerobic exercise
(N=215)
Group 2: 225 mins of aerobic exercise
(N=215)
Group 3: Stretch and Tone
(N=209)
P-value
screen_mod_confirm.factor
No 207 (96.3%) 208 (96.7%) 202 (96.7%) 0.962
Yes 8 (3.7%) 7 (3.3%) 7 (3.3%)
race.factor
White 159 (74.0%) 163 (75.8%) 161 (77.0%) 0.956
Black 43 (20.0%) 41 (19.1%) 38 (18.2%)
Other 13 (6.0%) 11 (5.1%) 10 (4.8%)
season
Fall 68 (31.6%) 70 (32.6%) 59 (28.2%) 0.774
Spring 41 (19.1%) 43 (20.0%) 52 (24.9%)
Summer 46 (21.4%) 46 (21.4%) 45 (21.5%)
Winter 48 (22.3%) 40 (18.6%) 43 (20.6%)
Missing 12 (5.6%) 16 (7.4%) 10 (4.8%)
dur_day_total_MODVIG_min_pla
Mean (SD) 52.5 (31.4) 50.1 (27.9) 45.5 (29.0) 0.0558
Median [Min, Max] 48.2 [3.67, 188] 42.8 [4.90, 129] 37.6 [3.01, 166]
Missing 12 (5.6%) 16 (7.4%) 10 (4.8%)
vo2sum_peak_ml
Mean (SD) 21.7 (4.75) 21.8 (5.24) 21.5 (5.14) 0.833
Median [Min, Max] 21.4 [12.6, 35.2] 21.4 [11.5, 38.1] 20.9 [10.1, 39.5]
sittime_total
Mean (SD) 683 (257) 658 (299) 665 (324) 0.669
Median [Min, Max] 660 [184, 1610] 611 [107, 2390] 600 [201, 3170]
Missing 0 (0%) 0 (0%) 1 (0.5%)
dur_day_total_IN_min_pla
Mean (SD) 823 (104) 825 (102) 819 (99.4) 0.84
Median [Min, Max] 816 [580, 1140] 815 [559, 1120] 822 [535, 1070]
Missing 12 (5.6%) 16 (7.4%) 10 (4.8%)
bmi
Mean (SD) 29.9 (5.86) 29.8 (6.00) 29.6 (5.40) 0.873
Median [Min, Max] 28.8 [19.1, 50.9] 29.2 [18.0, 49.5] 28.9 [18.8, 44.5]
Missing 0 (0%) 1 (0.5%) 0 (0%)

1.3 rand_treat.factor + screen_mod_confirm.factor

table1::table1(~screen_gender.factor+race.factor+screen_race_la_his.factor+vo2sum_peak_ml+NValidays4_3wk_1we+dur_day_total_MODVIG_min_pla+dur_day_total_IN_min_pla+sittime_total|rand_treat.factor  +screen_mod_confirm.factor,data= merged.df, overall=F,  extra.col=list(`P-value`=pvalue.func))
Group 1: 150 mins of aerobic exercise
Group 2: 225 mins of aerobic exercise
Group 3: Stretch and Tone
No
(N=207)
Yes
(N=8)
No
(N=208)
Yes
(N=7)
No
(N=202)
Yes
(N=7)
P-value
screen_gender.factor
Female 145 (70.0%) 7 (87.5%) 146 (70.2%) 6 (85.7%) 146 (72.3%) 4 (57.1%) 0.736
Male 62 (30.0%) 1 (12.5%) 62 (29.8%) 1 (14.3%) 56 (27.7%) 3 (42.9%)
race.factor
White 154 (74.4%) 5 (62.5%) 159 (76.4%) 4 (57.1%) 155 (76.7%) 6 (85.7%) 0.902
Black 41 (19.8%) 2 (25.0%) 38 (18.3%) 3 (42.9%) 37 (18.3%) 1 (14.3%)
Other 12 (5.8%) 1 (12.5%) 11 (5.3%) 0 (0%) 10 (5.0%) 0 (0%)
screen_race_la_his.factor
No 199 (96.1%) 7 (87.5%) 202 (97.1%) 7 (100%) 194 (96.0%) 6 (85.7%) 0.469
Yes 8 (3.9%) 1 (12.5%) 6 (2.9%) 0 (0%) 8 (4.0%) 1 (14.3%)
vo2sum_peak_ml
Mean (SD) 21.7 (4.82) 23.5 (1.58) 21.7 (5.27) 22.7 (4.57) 21.4 (5.11) 24.0 (5.71) 0.639
Median [Min, Max] 21.2 [12.6, 35.2] 23.8 [20.6, 25.5] 21.4 [11.5, 38.1] 23.7 [16.8, 29.5] 20.8 [10.1, 39.5] 25.1 [14.5, 32.0]
NValidays4_3wk_1we
Not Valid 2 (1.0%) 0 (0%) 5 (2.4%) 0 (0%) 4 (2.0%) 0 (0%) 0.877
Valid 194 (93.7%) 7 (87.5%) 187 (89.9%) 7 (100%) 189 (93.6%) 6 (85.7%)
Missing 11 (5.3%) 1 (12.5%) 16 (7.7%) 0 (0%) 9 (4.5%) 1 (14.3%)
dur_day_total_MODVIG_min_pla
Mean (SD) 52.1 (31.0) 64.0 (42.7) 50.3 (28.2) 45.0 (17.4) 45.0 (28.9) 63.7 (26.9) 0.0931
Median [Min, Max] 48.2 [3.67, 188] 56.0 [23.8, 146] 43.6 [4.90, 129] 36.5 [28.4, 75.1] 36.8 [3.01, 166] 54.1 [38.3, 114]
Missing 11 (5.3%) 1 (12.5%) 16 (7.7%) 0 (0%) 9 (4.5%) 1 (14.3%)
dur_day_total_IN_min_pla
Mean (SD) 823 (105) 814 (103) 823 (102) 884 (99.5) 822 (98.3) 716 (85.3) 0.103
Median [Min, Max] 816 [580, 1140] 868 [664, 916] 813 [559, 1120] 881 [726, 1060] 825 [535, 1070] 736 [581, 829]
Missing 11 (5.3%) 1 (12.5%) 16 (7.7%) 0 (0%) 9 (4.5%) 1 (14.3%)
sittime_total
Mean (SD) 684 (256) 636 (310) 654 (302) 768 (170) 669 (327) 541 (186) 0.68
Median [Min, Max] 660 [184, 1610] 589 [338, 1290] 611 [107, 2390] 851 [548, 978] 606 [201, 3170] 557 [213, 729]
Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (14.3%)

1.4 rand_treat.factor + screen_gender.factor

table1::table1(~screen_race_la_his.factor+screen_mod_confirm.factor+dur_day_total_MODVIG_min_pla+vo2sum_peak_ml+sittime_total|rand_treat.factor+screen_gender.factor   ,data= merged.df, overall=F,  extra.col=list(`P-value`=pvalue.func))
Group 1: 150 mins of aerobic exercise
Group 2: 225 mins of aerobic exercise
Group 3: Stretch and Tone
Female
(N=152)
Male
(N=63)
Female
(N=152)
Male
(N=63)
Female
(N=150)
Male
(N=59)
P-value
screen_race_la_his.factor
No 145 (95.4%) 61 (96.8%) 149 (98.0%) 60 (95.2%) 145 (96.7%) 55 (93.2%) 0.632
Yes 7 (4.6%) 2 (3.2%) 3 (2.0%) 3 (4.8%) 5 (3.3%) 4 (6.8%)
screen_mod_confirm.factor
No 145 (95.4%) 62 (98.4%) 146 (96.1%) 62 (98.4%) 146 (97.3%) 56 (94.9%) 0.732
Yes 7 (4.6%) 1 (1.6%) 6 (3.9%) 1 (1.6%) 4 (2.7%) 3 (5.1%)
dur_day_total_MODVIG_min_pla
Mean (SD) 52.3 (30.5) 53.1 (33.7) 50.2 (27.6) 49.7 (28.7) 43.3 (26.9) 51.4 (33.5) 0.118
Median [Min, Max] 48.4 [6.89, 188] 47.1 [3.67, 182] 43.6 [4.90, 123] 41.0 [11.3, 129] 35.8 [3.01, 120] 40.2 [5.65, 166]
Missing 9 (5.9%) 3 (4.8%) 16 (10.5%) 0 (0%) 6 (4.0%) 4 (6.8%)
vo2sum_peak_ml
Mean (SD) 20.8 (4.02) 24.0 (5.58) 20.6 (4.69) 24.7 (5.37) 20.4 (4.58) 24.2 (5.51) <0.001
Median [Min, Max] 20.6 [12.6, 32.5] 23.9 [13.9, 35.2] 20.2 [11.5, 33.0] 24.0 [12.2, 38.1] 20.0 [10.1, 34.1] 25.4 [11.3, 39.5]
sittime_total
Mean (SD) 673 (255) 705 (264) 657 (302) 659 (295) 634 (272) 746 (423) 0.192
Median [Min, Max] 642 [184, 1610] 669 [230, 1230] 613 [107, 2390] 581 [192, 1570] 581 [201, 1430] 625 [213, 3170]
Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1.7%)

1.5 rand_treat.factor + race.factor

table1::table1(~screen_gender.factor+screen_race_la_his.factor+screen_mod_confirm.factor+dur_day_total_MODVIG_min_pla+vo2sum_peak_ml+sittime_total|rand_treat.factor+race.factor   ,data= merged.df, overall=F,  extra.col=list(`P-value`=pvalue.func))
Group 1: 150 mins of aerobic exercise
Group 2: 225 mins of aerobic exercise
Group 3: Stretch and Tone
White
(N=159)
Black
(N=43)
Other
(N=13)
White
(N=163)
Black
(N=41)
Other
(N=11)
White
(N=161)
Black
(N=38)
Other
(N=10)
P-value
screen_gender.factor
Female 105 (66.0%) 37 (86.0%) 10 (76.9%) 113 (69.3%) 33 (80.5%) 6 (54.5%) 109 (67.7%) 35 (92.1%) 6 (60.0%) 0.0104
Male 54 (34.0%) 6 (14.0%) 3 (23.1%) 50 (30.7%) 8 (19.5%) 5 (45.5%) 52 (32.3%) 3 (7.9%) 4 (40.0%)
screen_race_la_his.factor
No 155 (97.5%) 43 (100%) 8 (61.5%) 159 (97.5%) 41 (100%) 9 (81.8%) 155 (96.3%) 37 (97.4%) 8 (80.0%) <0.001
Yes 4 (2.5%) 0 (0%) 5 (38.5%) 4 (2.5%) 0 (0%) 2 (18.2%) 6 (3.7%) 1 (2.6%) 2 (20.0%)
screen_mod_confirm.factor
No 154 (96.9%) 41 (95.3%) 12 (92.3%) 159 (97.5%) 38 (92.7%) 11 (100%) 155 (96.3%) 37 (97.4%) 10 (100%) 0.845
Yes 5 (3.1%) 2 (4.7%) 1 (7.7%) 4 (2.5%) 3 (7.3%) 0 (0%) 6 (3.7%) 1 (2.6%) 0 (0%)
dur_day_total_MODVIG_min_pla
Mean (SD) 52.3 (30.9) 52.9 (34.5) 53.7 (30.0) 52.3 (27.9) 36.9 (25.1) 64.0 (23.8) 47.9 (29.9) 31.7 (16.7) 59.6 (36.2) <0.001
Median [Min, Max] 49.0 [3.67, 188] 44.3 [8.69, 133] 47.1 [14.2, 126] 47.3 [7.21, 129] 33.2 [4.90, 117] 64.1 [33.8, 101] 39.9 [5.65, 166] 30.0 [3.01, 78.4] 51.0 [27.4, 143]
Missing 8 (5.0%) 4 (9.3%) 0 (0%) 10 (6.1%) 5 (12.2%) 1 (9.1%) 5 (3.1%) 3 (7.9%) 2 (20.0%)
vo2sum_peak_ml
Mean (SD) 22.5 (4.55) 19.0 (4.80) 20.8 (3.71) 22.7 (4.93) 17.4 (4.12) 24.6 (5.13) 22.7 (4.85) 16.7 (3.01) 21.0 (5.78) <0.001
Median [Min, Max] 22.3 [13.4, 35.2] 18.0 [12.6, 30.2] 20.7 [14.8, 26.3] 22.4 [12.6, 38.1] 17.5 [11.5, 25.5] 24.0 [18.7, 35.2] 22.5 [11.3, 39.5] 17.0 [10.1, 21.7] 19.8 [13.2, 32.4]
sittime_total
Mean (SD) 664 (254) 763 (278) 647 (170) 635 (304) 745 (296) 667 (175) 656 (340) 673 (259) 779 (291) 0.192
Median [Min, Max] 640 [184, 1610] 682 [230, 1290] 610 [367, 917] 610 [107, 2390] 703 [306, 1640] 671 [325, 856] 577 [201, 3170] 653 [229, 1360] 801 [294, 1250]
Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.6%) 0 (0%) 0 (0%)

2 VO2, BMI, Gender

TMP<-merged.df[complete.cases(merged.df$bmi),]
model_part<-lm(vo2sum_peak_ml~screen_gender.factor, TMP)
TMP$VO2_Pk.partial_sex<-model_part$residuals
TMP$VO2_Pk.partial_sex<-round(TMP$VO2_Pk.partial_sex, digits=3)
TMP$sittime_total<-TMP$sittime_weekend_total+TMP$sittime_weekday_total_min
model_part<-lm(vo2sum_peak_ml~bmi, TMP)
TMP$VO2_Pk.partial_bmi<-model_part$residuals
TMP$VO2_Pk.partial_bmi<-round(TMP$VO2_Pk.partial_bmi, digits=3)
table1::table1(~dur_day_total_MODVIG_min_pla+vo2sum_peak_ml+VO2_Pk.partial_sex+VO2_Pk.partial_bmi+sittime_total|screen_gender.factor+screen_mod_confirm.factor ,data= TMP, overall=F,  extra.col=list(`P-value`=pvalue.func))
Female
Male
No
(N=443)
Yes
(N=17)
No
(N=182)
Yes
(N=5)
P-value
dur_day_total_MODVIG_min_pla
Mean (SD) 48.0 (28.3) 62.8 (33.3) 51.9 (32.3) 40.7 (13.3) 0.129
Median [Min, Max] 42.0 [3.01, 188] 56.0 [28.4, 146] 42.7 [3.67, 182] 38.3 [23.8, 57.0]
Missing 29 (6.5%) 2 (11.8%) 7 (3.8%) 0 (0%)
vo2sum_peak_ml
Mean (SD) 20.5 (4.44) 22.9 (4.06) 24.3 (5.53) 24.9 (4.03) <0.001
Median [Min, Max] 20.1 [10.1, 34.1] 23.7 [14.5, 32.0] 24.2 [11.3, 39.5] 25.9 [18.7, 29.5]
VO2_Pk.partial_sex
Mean (SD) -0.0902 (4.44) 2.35 (4.06) -0.0162 (5.53) 0.598 (4.03) 0.225
Median [Min, Max] -0.499 [-10.5, 13.5] 3.10 [-6.10, 11.4] -0.192 [-13.0, 15.2] 1.56 [-5.64, 5.16]
VO2_Pk.partial_bmi
Mean (SD) -1.12 (3.63) -0.690 (3.87) 2.70 (4.88) 3.10 (4.07) <0.001
Median [Min, Max] -1.19 [-13.8, 9.48] -0.183 [-9.37, 7.07] 3.03 [-12.5, 16.1] 2.26 [-2.78, 7.18]
sittime_total
Mean (SD) 651 (277) 680 (239) 705 (334) 538 (263) 0.165
Median [Min, Max] 610 [107, 2390] 670 [338, 1290] 639 [192, 3170] 543 [213, 853]
Missing 0 (0%) 0 (0%) 0 (0%) 1 (20.0%)
par(mfrow = c(1, 2))
ggpubr::gghistogram(TMP, x = "VO2_Pk.partial_sex",
   add = "mean", rug = TRUE,
   color = "screen_gender.factor", palette = c("#00AFBB", "#E7B800"))

ggpubr::gghistogram(TMP, x = "VO2_Pk.partial_bmi",
   add = "mean", rug = TRUE,
   color = "screen_gender.factor", palette = c("#00AFBB", "#E7B800"))

2.1 Confirmation of ballanced measures

2.1.1 lm(vo2sum_peak_ml~rand_treat.factor*screen_site.factor,merged.df )

mod<-(lm(vo2sum_peak_ml~rand_treat.factor*screen_site.factor,merged.df ))
emm <- emmeans::emmeans(mod, pairwise ~rand_treat.factor*screen_site.factor, level = 0.95)
summary.em<-summary(emm)
sig_VO2_diffs<-summary.em$contrasts%>% filter(p.value<0.05)
sig_VO2_diffs

2.1.2 lm(dur_day_total_MODVIG_min_pla~rand_treat.factor*screen_site.factor,merged.df )

mod<-(lm(dur_day_total_MODVIG_min_pla~rand_treat.factor*screen_site.factor,merged.df ))
emm <- emmeans::emmeans(mod, pairwise ~rand_treat.factor*screen_site.factor, level = 0.95)
summary.em<-summary(emm)
sig_ACELL_diffs<-summary.em$contrasts%>% filter(p.value<0.05)
sig_ACELL_diffs

3 Baseline Randomization

table1::table1(~screen_site.factor+screen_gender.factor+Heavy_Drinker.factor+Smoking.Status.factor+ dur_day_total_MODVIG_min_pla+vo2sum_peak_ml+VO2_Pk.partial_sex+VO2_Pk.partial_bmi|rand_treat.factor  ,data= TMP, overall=F,  extra.col=list(`P-value`=pvalue.func))
Group 1: 150 mins of aerobic exercise
(N=215)
Group 2: 225 mins of aerobic exercise
(N=214)
Group 3: Stretch and Tone
(N=209)
P-value
screen_site.factor
Kansas 69 (32.1%) 71 (33.2%) 70 (33.5%) 0.999
Northeastern 72 (33.5%) 71 (33.2%) 69 (33.0%)
Pitt 74 (34.4%) 72 (33.6%) 70 (33.5%)
screen_gender.factor
Female 152 (70.7%) 151 (70.6%) 150 (71.8%) 0.956
Male 63 (29.3%) 63 (29.4%) 59 (28.2%)
Heavy_Drinker.factor
Heavy Drinker 28 (13.0%) 25 (11.7%) 26 (12.4%) 0.915
Not Heavy Drinker 187 (87.0%) 189 (88.3%) 183 (87.6%)
Smoking.Status.factor
Current 11 (5.1%) 10 (4.7%) 9 (4.3%) 0.95
Former 90 (41.9%) 88 (41.1%) 93 (44.5%)
Never 114 (53.0%) 116 (54.2%) 106 (50.7%)
Missing 0 (0%) 0 (0%) 1 (0.5%)
dur_day_total_MODVIG_min_pla
Mean (SD) 52.5 (31.4) 50.0 (28.0) 45.5 (29.0) 0.0565
Median [Min, Max] 48.2 [3.67, 188] 42.7 [4.90, 129] 37.6 [3.01, 166]
Missing 12 (5.6%) 16 (7.5%) 10 (4.8%)
vo2sum_peak_ml
Mean (SD) 21.7 (4.75) 21.8 (5.25) 21.5 (5.14) 0.828
Median [Min, Max] 21.4 [12.6, 35.2] 21.5 [11.5, 38.1] 20.9 [10.1, 39.5]
VO2_Pk.partial_sex
Mean (SD) 0.0219 (4.53) 0.0818 (4.90) -0.161 (4.84) 0.862
Median [Min, Max] -0.0990 [-10.4, 11.9] -0.449 [-12.1, 13.8] -0.299 [-13.0, 15.2]
VO2_Pk.partial_bmi
Mean (SD) 0.110 (4.07) 0.124 (4.46) -0.241 (4.52) 0.622
Median [Min, Max] -0.0360 [-9.84, 11.2] -0.458 [-13.8, 16.0] -0.564 [-12.5, 16.1]
table1::table1(~screen_mod_confirm.factor+season+dur_day_total_MODVIG_min_pla+NValidays4_3wk_1we+vo2sum_peak_ml+VO2_Pk.partial_sex+VO2_Pk.partial_bmi|rand_treat.factor  ,data= TMP, overall=F,  extra.col=list(`P-value`=pvalue.func))
Group 1: 150 mins of aerobic exercise
(N=215)
Group 2: 225 mins of aerobic exercise
(N=214)
Group 3: Stretch and Tone
(N=209)
P-value
screen_mod_confirm.factor
No 207 (96.3%) 207 (96.7%) 202 (96.7%) 0.964
Yes 8 (3.7%) 7 (3.3%) 7 (3.3%)
season
Fall 68 (31.6%) 69 (32.2%) 59 (28.2%) 0.791
Spring 41 (19.1%) 43 (20.1%) 52 (24.9%)
Summer 46 (21.4%) 46 (21.5%) 45 (21.5%)
Winter 48 (22.3%) 40 (18.7%) 43 (20.6%)
Missing 12 (5.6%) 16 (7.5%) 10 (4.8%)
dur_day_total_MODVIG_min_pla
Mean (SD) 52.5 (31.4) 50.0 (28.0) 45.5 (29.0) 0.0565
Median [Min, Max] 48.2 [3.67, 188] 42.7 [4.90, 129] 37.6 [3.01, 166]
Missing 12 (5.6%) 16 (7.5%) 10 (4.8%)
NValidays4_3wk_1we
Not Valid 2 (0.9%) 5 (2.3%) 4 (1.9%) 0.503
Valid 201 (93.5%) 193 (90.2%) 195 (93.3%)
Missing 12 (5.6%) 16 (7.5%) 10 (4.8%)
vo2sum_peak_ml
Mean (SD) 21.7 (4.75) 21.8 (5.25) 21.5 (5.14) 0.828
Median [Min, Max] 21.4 [12.6, 35.2] 21.5 [11.5, 38.1] 20.9 [10.1, 39.5]
VO2_Pk.partial_sex
Mean (SD) 0.0219 (4.53) 0.0818 (4.90) -0.161 (4.84) 0.862
Median [Min, Max] -0.0990 [-10.4, 11.9] -0.449 [-12.1, 13.8] -0.299 [-13.0, 15.2]
VO2_Pk.partial_bmi
Mean (SD) 0.110 (4.07) 0.124 (4.46) -0.241 (4.52) 0.622
Median [Min, Max] -0.0360 [-9.84, 11.2] -0.458 [-13.8, 16.0] -0.564 [-12.5, 16.1]

3.0.1 For Jermon

ggstatsplot::grouped_gghistostats(merged.df,ADI_NATRANK, grouping.var=screen_site.factor)

merged.df<-merged.df %>% 
  group_by(screen_site.factor) %>%
  mutate(
  ADI_NATRANK_Z=scale(ADI_NATRANK),
  ADI_STATERNK_Z=scale(ADI_STATERNK),
  tes_rank=scale(tes, center=T),
  tesctyscor_rank=scale(tes, center=T))


tmp<-merged.df %>% select(record_id,screen_site.factor ,race.factor,ADI_STATERNK_Z, ADI_NATRANK_Z) %>%reshape2::melt(.,id.vars=c("record_id","screen_site.factor","race.factor") )
tmp$value<-as.numeric(tmp$value)
ggpubr::gghistogram(tmp, x = "value",
   add = "mean", rug = TRUE,
   color = "variable", palette = c("#00AFBB", "#E7B800")) +facet_wrap(~screen_site.factor+race.factor,scale="free")

h

TMP<-merged.df[complete.cases(merged.df$ADI_STATERNK),]
summary(lm(ADI_NATRANK~poly(ADI_STATERNK,2)*screen_site.factor,TMP ))
## 
## Call:
## lm(formula = ADI_NATRANK ~ poly(ADI_STATERNK, 2) * screen_site.factor, 
##     data = TMP)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.193  -1.601   0.169   2.009  10.371 
## 
## Coefficients:
##                                                        Estimate Std. Error
## (Intercept)                                             50.3313     0.2942
## poly(ADI_STATERNK, 2)1                                 619.2057     7.4694
## poly(ADI_STATERNK, 2)2                                -118.2134     7.3346
## screen_site.factorNortheastern                         -35.2732     0.4480
## screen_site.factorPitt                                  -6.7429     0.4275
## poly(ADI_STATERNK, 2)1:screen_site.factorNortheastern -286.3476    14.7792
## poly(ADI_STATERNK, 2)2:screen_site.factorNortheastern  155.5476    12.5009
## poly(ADI_STATERNK, 2)1:screen_site.factorPitt          -21.9757    10.1623
## poly(ADI_STATERNK, 2)2:screen_site.factorPitt           87.2663    10.0537
##                                                       t value Pr(>|t|)    
## (Intercept)                                           171.066   <2e-16 ***
## poly(ADI_STATERNK, 2)1                                 82.899   <2e-16 ***
## poly(ADI_STATERNK, 2)2                                -16.117   <2e-16 ***
## screen_site.factorNortheastern                        -78.738   <2e-16 ***
## screen_site.factorPitt                                -15.773   <2e-16 ***
## poly(ADI_STATERNK, 2)1:screen_site.factorNortheastern -19.375   <2e-16 ***
## poly(ADI_STATERNK, 2)2:screen_site.factorNortheastern  12.443   <2e-16 ***
## poly(ADI_STATERNK, 2)1:screen_site.factorPitt          -2.162    0.031 *  
## poly(ADI_STATERNK, 2)2:screen_site.factorPitt           8.680   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.063 on 633 degrees of freedom
## Multiple R-squared:  0.9794, Adjusted R-squared:  0.9792 
## F-statistic:  3766 on 8 and 633 DF,  p-value: < 2.2e-16
mod<-(lm(ADI_NATRANK~poly(ADI_STATERNK,2)*screen_site.factor,TMP ))

par(mfrow = c(1, 2))
visreg::visreg(mod, "screen_site.factor",by="ADI_STATERNK", overlay=T )
visreg::visreg(mod, "ADI_STATERNK",by="screen_site.factor", overlay=T )

model.diag.metrics <- augment(mod)
class(model.diag.metrics$`poly(ADI_STATERNK, 2)`)<-"numeric"


mod<-(lm(ADI_NATRANK~ADI_STATERNK*screen_site.factor,TMP ))
model.diag.metrics <- augment(mod)

ggplot(model.diag.metrics, aes(ADI_STATERNK, ADI_NATRANK)) +
  geom_point() +
  stat_smooth(method = lm, se = FALSE) +
  geom_segment(aes(xend = ADI_STATERNK, yend = .fitted), color = "red", size = 0.3)+facet_wrap(~screen_site.factor)

summary(lm(ses_life_standing.factor~ses_community_standing.factor:tes+screen_site.factor+educ,merged.df ))
## 
## Call:
## lm(formula = ses_life_standing.factor ~ ses_community_standing.factor:tes + 
##     screen_site.factor + educ, data = merged.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4996 -0.8985  0.0961  0.8888  3.9428 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        0.0956795  0.4428385   0.216    0.829    
## screen_site.factorNortheastern     0.1560715  0.1362785   1.145    0.253    
## screen_site.factorPitt            -0.0896990  0.1360122  -0.659    0.510    
## educ                               0.1985580  0.0248347   7.995 6.43e-15 ***
## ses_community_standing.factor:tes  0.0047963  0.0003101  15.467  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.364 on 615 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.3595, Adjusted R-squared:  0.3553 
## F-statistic: 86.28 on 4 and 615 DF,  p-value: < 2.2e-16
mod<-(lm(ses_life_standing.factor~ses_community_standing.factor:tes+screen_site.factor+educ,merged.df ))
visreg::visreg(mod, "ses_community_standing.factor",by="tes", overlay=T)

model.diag.metrics <- augment(mod)
ggplot(model.diag.metrics, aes(ses_community_standing.factor, ses_life_standing.factor)) +
  geom_point() +
  stat_smooth(method = lm, se = FALSE) +
  geom_segment(aes(xend = ses_community_standing.factor, yend = .fitted), color = "red", size = 0.3) +facet_wrap(~screen_site.factor)

par(mfrow = c(2, 2))
autoplot(mod)

3.1 Play..

 table1::table1(~screen_age+AVG_cogTscore_rank+educ+ADI_NATRANK+ADI_STATERNK+`Walkability Index`+tes+tesctyscor|screen_site.factor  ,data= merged.df, overall=F,  extra.col=list(`P-value`=pvalue.func))
Kansas
(N=214)
Northeastern
(N=215)
Pitt
(N=219)
P-value
screen_age
Mean (SD) 69.4 (3.76) 70.5 (3.76) 69.4 (3.62) 0.00326
Median [Min, Max] 69.0 [64.0, 80.0] 70.0 [65.0, 80.0] 69.0 [65.0, 80.0]
AVG_cogTscore_rank
Mean (SD) 0.993 (0.119) 0.954 (0.132) 0.990 (0.125) 0.00165
Median [Min, Max] 1.01 [0.632, 1.21] 0.954 [0.630, 1.21] 1.00 [0.644, 1.26]
educ
Mean (SD) 16.4 (2.19) 16.5 (2.26) 16.1 (2.22) 0.183
Median [Min, Max] 16.0 [11.0, 21.0] 16.0 [12.0, 20.0] 16.0 [10.0, 20.0]
ADI_NATRANK
Mean (SD) 43.2 (24.3) 11.2 (8.76) 55.7 (25.5) <0.001
Median [Min, Max] 38.0 [5.00, 100] 9.00 [1.00, 52.0] 54.0 [4.00, 100]
Missing 1 (0.5%) 5 (2.3%) 0 (0%)
ADI_STATERNK
Mean (SD) 2.95 (2.60) 2.87 (1.97) 5.04 (2.99) <0.001
Median [Min, Max] 2.00 [1.00, 10.0] 2.00 [1.00, 10.0] 5.00 [1.00, 10.0]
Missing 1 (0.5%) 5 (2.3%) 0 (0%)
Walkability Index
Mean (SD) 10.9 (3.94) 15.2 (2.51) 13.4 (3.82) <0.001
Median [Min, Max] 10.7 [2.67, 18.3] 15.5 [4.50, 19.3] 14.2 [4.17, 19.8]
tes
Mean (SD) 98.1 (7.95) 91.2 (8.70) 91.3 (10.0) <0.001
Median [Min, Max] 100 [34.8, 100] 93.2 [37.4, 100] 93.2 [42.1, 100]
Missing 17 (7.9%) 0 (0%) 6 (2.7%)
tesctyscor
Mean (SD) 94.5 (4.17) 89.0 (4.12) 88.0 (3.19) <0.001
Median [Min, Max] 95.7 [71.8, 100] 90.4 [68.1, 91.7] 87.0 [59.7, 95.3]
Missing 17 (7.9%) 0 (0%) 6 (2.7%)