Graficas con Plotly en Python

import pandas as pd
import cufflinks as cf
from IPython.display import display,HTML

cf.set_config_file(sharing='public',theme='white',offline=True) # write cf.getThemes() to find all themes available
print(pd.read_csv('population_total.csv'))
            country    year    population
0             China  2020.0  1.439324e+09
1             China  2019.0  1.433784e+09
2             China  2018.0  1.427648e+09
3             China  2017.0  1.421022e+09
4             China  2016.0  1.414049e+09
...             ...     ...           ...
4180  United States  1965.0  1.997337e+08
4181  United States  1960.0  1.867206e+08
4182  United States  1955.0  1.716853e+08
4183          India  1960.0  4.505477e+08
4184          India  1955.0  4.098806e+08

[4185 rows x 3 columns]
df_population = pd.read_csv('population_total.csv')
df_population = df_population.dropna()
df_population = df_population.pivot(index='year', columns='country',
                                    values='population')
df_population = df_population[['United States', 'India', 'China', 
                               'Indonesia', 'Brazil']]
print(df_population)
country  United States         India         China    Indonesia       Brazil
year                                                                        
1955.0     171685336.0  4.098806e+08  6.122416e+08   77273425.0   62533919.0
1960.0     186720571.0  4.505477e+08  6.604081e+08   87751068.0   72179226.0
1965.0     199733676.0  4.991233e+08  7.242190e+08  100267062.0   83373530.0
1970.0     209513341.0  5.551898e+08  8.276014e+08  114793178.0   95113265.0
1975.0     219081251.0  6.231029e+08  9.262409e+08  130680727.0  107216205.0
1980.0     229476354.0  6.989528e+08  1.000089e+09  147447836.0  120694009.0
1985.0     240499825.0  7.843600e+08  1.075589e+09  164982451.0  135274080.0
1990.0     252120309.0  8.732778e+08  1.176884e+09  181413402.0  149003223.0
1995.0     265163745.0  9.639226e+08  1.240921e+09  196934260.0  162019896.0
2000.0     281710909.0  1.056576e+09  1.290551e+09  211513823.0  174790340.0
2005.0     294993511.0  1.147610e+09  1.330776e+09  226289470.0  186127103.0
2010.0     309011475.0  1.234281e+09  1.368811e+09  241834215.0  195713635.0
2015.0     320878310.0  1.310152e+09  1.406848e+09  258383256.0  204471769.0
2016.0     323015995.0  1.324517e+09  1.414049e+09  261556381.0  206163053.0
2017.0     325084756.0  1.338677e+09  1.421022e+09  264650963.0  207833823.0
2018.0     327096265.0  1.352642e+09  1.427648e+09  267670543.0  209469323.0
2019.0     329064917.0  1.366418e+09  1.433784e+09  270625568.0  211049527.0
2020.0     331002651.0  1.380004e+09  1.439324e+09  273523615.0  212559417.0
df_population.iplot(kind='line', xTitle='Years', yTitle='Population',
                    title='Population (1955-2020)')
df_population_2020 = df_population[df_population.index.isin([2020])]
df_population_2020 = df_population_2020.T
df_population_2020.iplot(kind='bar', color='lightgreen',
                           xTitle='Years', yTitle='Population',
                           title='Population in 2020')
# filter years out
df_population_sample = df_population[df_population.index.isin([1980, 1990, 2000, 2010, 2020])]

# plotting
df_population_sample.iplot(kind='bar', xTitle='Years',
                           yTitle='Population')
df_population['United States'].iplot(kind='box', color='green', 
                                     yTitle='Population')
df_population.iplot(kind='box', xTitle='Countries',
                    yTitle='Population')
df_population[['United States', 'Indonesia']].iplot(kind='hist',
                                                    xTitle='Population')
# transforming data
df_population_2020 = df_population_2020.reset_index()
df_population_2020 = df_population_2020.rename(columns={2020:'2020'})

# plotting
df_population_2020.iplot(kind='pie', labels='country',
                         values='2020',
                         title='Population in 2020 (%)')
# transforming data
df_population_2020 = df_population_2020.reset_index()
df_population_2020 = df_population_2020.rename(columns={2020:'2020'})

# plotting
df_population_2020.iplot(kind='pie', labels='country',
                         values='2020',
                         title='Population in 2020 (%)')
df_population.iplot(kind='scatter', mode='markers')