For 1≤j≤k,m(j)=((k−j+1)n−(k−j)n)/kn
Since Y is the minimum value of Xi over all of the Xi’s, then in order to find the distribution function m(j) = P(Y=j), we will need to count the number of ways that we can assign X1, X2, …, Xn to values between j and k with at least one Xi being assigned to j and divide by the total number of possible ways to assign X1, X2, …, Xn to values between 1 and k.
p = P(machine will fail after 10 years) = .1 p-1 = P(machine will not fail after 10 years) = .9
P(X=n)=(1−p)^(n−1) ∗p
prob_8_years = ((.9)^(7))*.1
paste("P(X=8)=", prob_8_years)
## [1] "P(X=8)= 0.04782969"
Expected Value:
E[X]=1/p
geo_EV = 1/(.1)
paste("E(X)=", geo_EV)
## [1] "E(X)= 10"
Expected value of 10 years for machine
StandardDeviation=√(1−p/p^2)
sd=sqrt((.9)/(.1^2))
paste("sd=", sd)
## [1] "sd= 9.48683298050514"
P(X>=8)=e^−k/u
prob_greater_8_years = exp(-8/10)
paste("P(X>=8)=", prob_greater_8_years)
## [1] "P(X>=8)= 0.449328964117222"
Expected Value:
E[X]=u=1/λ=10
λ=1/10
exp_EV = 1/(.1)
paste("E(X)=",exp_EV)
## [1] "E(X)= 10"
Standard Deviation:
sd=√(1/λ^2)
sd = sqrt((1)/(.1^2))
paste("sd = ", sd)
## [1] "sd = 10"
p = P(machine will fail after 10 years) = .1 p-1 = P(machine will not fail after 10 years) = .9
P(X>8)=1∗p^x(1−p)^n−x
biprob_greater_8_years = (.1)^(0)*(.9)^(8)
paste("P(X>=8) = ", biprob_greater_8_years)
## [1] "P(X>=8) = 0.43046721"
Expected Value:
E[X]=np
binomial_EV = 8*(.1)
paste("E(X) = ", binomial_EV, "failures")
## [1] "E(X) = 0.8 failures"
Standard Deviation:
#sd = sqrt(n*p*q)
sd = sqrt(8*(.1)*(.9))
paste("sd = ", sd)
## [1] "sd = 0.848528137423857"
P(X=8)=(λxe−λ)/x!
λ=np/t=(8∗.1)/1=.8 x=8
poisson_prob = .8^(8)*exp(-.8/8)
paste("P(X>=8) = ", poisson_prob)
## [1] "P(X>=8) = 0.151806528072716"
Expected Value
E[X]=λ=.8
Standard Deviation:
sd=√λ
sd = sqrt(.8)
paste("sd = ", sd)
## [1] "sd = 0.894427190999916"