library(tidyverse)
data_to_viz <- read_csv("data/data-to-explore.csv")
p <- ggplot(data_to_viz) +
geom_point(aes(x = time_spent, y = total_points_earned, color = subject))
p + ylim(0, 2500) +
facet_wrap(~subject, ncol = 3) +
labs(title = "Total Points Earned vs. Time Spent",
y = "Total Points Earned",
x = "Time Spent on Course",
caption = "Is there a correlation between the time spent and the total points earned?") +
theme_minimal() +
scale_color_brewer(palette = "Spectral") +
theme(legend.position = "none")

The scatter plots above show the correlation between total points
earned and time spent on course for each of the five subjects. Though
there are some outliers, there is an overall positive correlation
between the two variables, meaning that as the time spent in the course
increases, so does the total points earned. Further analysis is needed
to determine more information regarding the outliers, as well as if
there are any activities that are being done outside of the online
course that may directly contribute to grades.
LS0tCnRpdGxlOiAiVG90YWwgUG9pbnRzIEVhcm5lZCAmIFRpbWUgU3BlbnQiCmF1dGhvcjogIkplc3NpY2EgQmV0aGVhIgpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksJyVCICVlLCAlWScpYCIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgY29kZV9mb2xkaW5nOiBoaWRlCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCgpkYXRhX3RvX3ZpeiA8LSByZWFkX2NzdigiZGF0YS9kYXRhLXRvLWV4cGxvcmUuY3N2IikKCnAgPC0gZ2dwbG90KGRhdGFfdG9fdml6KSArCiAgZ2VvbV9wb2ludChhZXMoeCA9IHRpbWVfc3BlbnQsIHkgPSB0b3RhbF9wb2ludHNfZWFybmVkLCBjb2xvciA9IHN1YmplY3QpKQogIApwICsgeWxpbSgwLCAyNTAwKSArIApmYWNldF93cmFwKH5zdWJqZWN0LCBuY29sID0gMykgKyAKbGFicyh0aXRsZSA9ICJUb3RhbCBQb2ludHMgRWFybmVkIHZzLiBUaW1lIFNwZW50IiwgCiAgICAgeSA9ICJUb3RhbCBQb2ludHMgRWFybmVkIiwgCiAgICAgeCA9ICJUaW1lIFNwZW50IG9uIENvdXJzZSIsIAogICAgIGNhcHRpb24gPSAiSXMgdGhlcmUgYSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRoZSB0aW1lIHNwZW50IGFuZCB0aGUgdG90YWwgcG9pbnRzIGVhcm5lZD8iKSArIAogIAp0aGVtZV9taW5pbWFsKCkgKyAKc2NhbGVfY29sb3JfYnJld2VyKHBhbGV0dGUgPSAiU3BlY3RyYWwiKSArIAp0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpIApgYGAKClRoZSBzY2F0dGVyIHBsb3RzIGFib3ZlIHNob3cgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gdG90YWwgcG9pbnRzIGVhcm5lZCBhbmQgdGltZSBzcGVudCBvbiBjb3Vyc2UgZm9yIGVhY2ggb2YgdGhlIGZpdmUgc3ViamVjdHMuIFRob3VnaCB0aGVyZSBhcmUgc29tZSBvdXRsaWVycywgdGhlcmUgaXMgYW4gb3ZlcmFsbCBwb3NpdGl2ZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRoZSB0d28gdmFyaWFibGVzLCBtZWFuaW5nIHRoYXQgYXMgdGhlIHRpbWUgc3BlbnQgaW4gdGhlIGNvdXJzZSBpbmNyZWFzZXMsIHNvIGRvZXMgdGhlIHRvdGFsIHBvaW50cyBlYXJuZWQuIEZ1cnRoZXIgYW5hbHlzaXMgaXMgbmVlZGVkIHRvIGRldGVybWluZSBtb3JlIGluZm9ybWF0aW9uIHJlZ2FyZGluZyB0aGUgb3V0bGllcnMsIGFzIHdlbGwgYXMgaWYgdGhlcmUgYXJlIGFueSBhY3Rpdml0aWVzIHRoYXQgYXJlIGJlaW5nIGRvbmUgb3V0c2lkZSBvZiB0aGUgb25saW5lIGNvdXJzZSB0aGF0IG1heSBkaXJlY3RseSBjb250cmlidXRlIHRvIGdyYWRlcy4K