Analysis

Analysis Priors

Demographics Section

Demographic table

Experiment_2_Analysis_DF$Gender <- as.factor(Experiment_2_Analysis_DF$Gender)
demo_table_j <- d2
label(demo_table_j$Ethnic_Origin) <- "Ethnic Origin"
table1(~ Gender + Age + Education + Ethnicity + Ethnic_Origin, data = demo_table_j)
Overall
(N=287)
Gender
Female 127 (44.3%)
Male 160 (55.7%)
Age
Mean (SD) 29.5 (9.89)
Median [Min, Max] 26.0 [18.0, 78.0]
Education
Primary School 5 (1.7%)
GCSEs or Equivalent 18 (6.3%)
A-Levels or Equivalent 65 (22.6%)
University Undergraduate Program 126 (43.9%)
University Post-Graduate Program 64 (22.3%)
Doctoral Degree 4 (1.4%)
Prefer not to respond 5 (1.7%)
Ethnicity
White 221 (77.0%)
Mixed or Multi-ethnic 7 (2.4%)
Asian or Asian Scottish or Asian British 5 (1.7%)
African 50 (17.4%)
Other ethnicity 3 (1.0%)
Prefer not to respond 1 (0.3%)
Ethnic Origin
English 17 (5.9%)
European 199 (69.3%)
Latin American 6 (2.1%)
Asian 7 (2.4%)
African 49 (17.1%)
Other 9 (3.1%)

Gender

Experiment_2_Analysis_DF$Gender <- as.factor(Experiment_2_Analysis_DF$Gender)
ggplot(d2, aes(x = Gender, fill = Gender)) +
  geom_histogram(stat = "count") +
  labs(x = "Gender2") +
  scale_x_discrete(labels = c("Female", "Male", "Gender \nNon-Binary", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 160, 10), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Age

Experiment_2_Demographics_DF$Gender <- as.factor(Experiment_2_Demographics_DF$Gender)
d2 <- Experiment_2_Demographics_DF %>%
  mutate_at(vars(locfunc(Experiment_2_Demographics_DF, "Gender")), ~ as.factor(recode(., "1" = "Female", "2" = "Male")))
age_plot <- ggplot(d2, aes(x = Age, fill = Gender)) +
  geom_bar(data = subset(d2, Gender == "Female")) +
  geom_bar(data = subset(d2, Gender == "Male"), aes(y = ..count.. * (-1))) +
  scale_y_continuous(breaks = seq(-30, 30, 1), labels = abs(seq(-30, 30, 1))) +
  scale_x_continuous(breaks = seq(20, 80, 5)) +
  ylab("Number of Participants") +
  xlab("Age of Participants (In years)") +
  geom_hline(yintercept = 0) +
  coord_flip()
ggplotly(age_plot)
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.

Ethnicity

Experiment_2_Analysis_DF$Ethnicity <- as.factor(Experiment_2_Analysis_DF$Ethnicity)
ggplot(Experiment_2_Analysis_DF, aes(x = Ethnicity, fill = Ethnicity)) +
  geom_histogram(stat = "count") +
  scale_x_discrete(labels = c("White ", "Mixed \nor \nMulti-ethnic ", "Asian \nor \nAsian Scottish \nor \nAsian British", "African", "Caribbean \nor \nBlack", "Arab ", "Other ethnicity", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Ethnic Origin

Experiment_2_Analysis_DF$Ethnic_Origin <- as.factor(Experiment_2_Analysis_DF$Ethnic_Origin)
ggplot(Experiment_2_Analysis_DF, aes(x = Ethnic_Origin, fill = Ethnic_Origin)) +
  geom_histogram(stat = "count") +
  scale_x_discrete(labels = c("Scottish", "English", "European", "Latin \nAmerican", "Asian", "Arab", "African", "Other", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Education

Experiment_2_Analysis_DF$Education <- as.factor(Experiment_2_Analysis_DF$Education)
ggplot(Experiment_2_Analysis_DF, aes(x = Education, fill = Education)) +
  geom_histogram(stat = "count") +
  scale_x_discrete(labels = c("Primary School ", "GCSEs \nor \nEquivalent", "A-Levels \nor \nEquivalent", "University \nUndergraduate \nProgram", "University \nPost-Graduate \nProgram", "Doctoral \nDegree", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Analysis

General Correlation


correlation_df <- Experiment_2_Analysis_DF %>% rename(
  "Ethical Preference" = "DOSPERT_Ethical_Preference_z",
  "Financial Preference" = "DOSPERT_Financial_Preference_z",
  "Health and Safety Preference" = "DOSPERT_HS_Preference_z",
  "Social Preference" = "DOSPERT_Social_Preference_z",
  "Recreational Preference" = "DOSPERT_Recreation_Preference_z",
  "Dominance" = "dominance_z",
  "Prestige" = "prestige_z",
  "Leadership" = "leadership_z",
  "UMS Affiliation" = "UMS_Affiliation_Questions_z",
  "UMS Intimacy" = "UMS_Intimacy_Questions_z",
  "UMS Sum" = "UMS_Questions_z",
  "B-PNI" = "PNI_z",
  "Risk Perception" = "DOSPERT_Perception_z",
  "Risk Benefit" = "DOSPERT_Benefit_z",
  "Risk Sum" = "DOSPERT_Likelihood_z",
  "General Expected Benefits" = "DOSPERT_Benefit_z",
  "General Risk Preference" = "DOSPERT_General_Preference_z"
)
corr_1 <- correlation(correlation_df, bayesian = TRUE, method = "auto")
saveRDS(corr_1, "corr_1.rds")
corr_1 <- readRDS("corr_1.rds")
print(summary(corr_1))
## # Correlation Matrix (auto-method)
## 
## Parameter                           | DOSPERT_General_Perceived_Risk_z | DOSPERT_General_Expected_Benefits_z | General Risk Preference | Recreational Preference | Health and Safety Preference | Social Preference | Financial Preference | Ethical Preference | DOSPERT_Social_Benefit_z | DOSPERT_Recreation_Benefit_z | DOSPERT_Financial_Benefit_z | DOSPERT_Ethical_Benefit_z | DOSPERT_Social_Perception_z | DOSPERT_Recreation_Perception_z | DOSPERT_HS_Perception_z | DOSPERT_Financial_Perception_z | DOSPERT_Ethical_Perception_z | DOSPERT_Social_Likelihood_z | DOSPERT_Recreation_Likelihood_z | DOSPERT_HS_Likelihood_z | DOSPERT_Financial_Likelihood_z | DOSPERT_Ethical_Likelihood_z |    B-PNI | Leadership | Prestige | Dominance | UMS Sum | UMS Affiliation | UMS Intimacy | General Expected Benefits | Risk Perception | Risk Sum |  Age | Contact
## ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
## X                                   |                             0.10 |                                0.06 |                    0.09 |                    0.08 |                         0.06 |              0.05 |                 0.11 |               0.08 |                     0.02 |                         0.05 |                        0.08 |                      0.05 |                       -0.07 |                           -0.11 |                   -0.06 |                          -0.10 |                        -0.07 |                       -0.02 |                            0.08 |                    0.03 |                           0.05 |                        -0.04 |    -0.03 |      -0.01 |    -0.09 |      0.02 |   -0.07 |           -0.04 |        -0.08 |                      0.06 |           -0.10 |     0.02 | 0.01 | 1.00***
## Contact                             |                             0.10 |                                0.06 |                    0.09 |                    0.08 |                         0.06 |              0.05 |                 0.10 |               0.08 |                     0.03 |                         0.05 |                        0.08 |                      0.06 |                       -0.07 |                           -0.11 |                   -0.06 |                          -0.10 |                        -0.08 |                       -0.03 |                            0.07 |                    0.02 |                           0.04 |                        -0.04 |    -0.03 |      -0.02 |    -0.09 |      0.02 |   -0.07 |           -0.04 |        -0.08 |                      0.06 |           -0.10 |     0.02 | 0.01 |        
## Age                                 |                            -0.08 |                            -0.30*** |                -0.28*** |                -0.25*** |                     -0.25*** |          -0.25*** |             -0.29*** |             -0.13* |                 -0.27*** |                     -0.23*** |                    -0.32*** |                  -0.18*** |                        0.03 |                         0.18*** |                    0.07 |                           0.06 |                    -6.51e-03 |                     -0.18** |                         -0.17** |                -0.18*** |                       -0.18*** |                        -0.07 | -0.32*** |      -0.03 |  -0.17** |  -0.20*** |   -0.08 |         -0.15** |         0.02 |                  -0.30*** |            0.08 | -0.19*** |      |        
## Risk Sum                            |                          0.40*** |                             0.54*** |                 0.61*** |                 0.48*** |                      0.49*** |           0.48*** |              0.57*** |            0.53*** |                  0.41*** |                      0.43*** |                     0.51*** |                   0.48*** |                    -0.32*** |                        -0.36*** |                -0.32*** |                       -0.36*** |                     -0.32*** |                     0.76*** |                         0.82*** |                 0.80*** |                        0.83*** |                      0.85*** |  0.26*** |      0.14* |  0.17*** |   0.36*** |   0.12* |         0.23*** |        -0.03 |                   0.54*** |        -0.40*** |          |      |        
## Risk Perception                     |                         -1.00*** |                            -0.23*** |                -0.58*** |                -0.60*** |                     -0.51*** |          -0.29*** |             -0.50*** |           -0.59*** |                    -0.05 |                     -0.26*** |                    -0.22*** |                  -0.22*** |                     0.78*** |                         0.82*** |                 0.87*** |                        0.86*** |                      0.89*** |                    -0.23*** |                        -0.36*** |                -0.40*** |                       -0.29*** |                     -0.36*** |     0.04 |       0.07 |     0.06 |  -0.19*** |   0.12* |       -2.06e-03 |      0.21*** |                  -0.23*** |                 |          |      |        
## General Expected Benefits           |                          0.23*** |                             1.00*** |                 0.92*** |                 0.72*** |                      0.76*** |           0.78*** |              0.76*** |            0.76*** |                  0.80*** |                      0.83*** |                     0.82*** |                   0.87*** |                     -0.16** |                        -0.30*** |                 -0.15** |                        -0.17** |                      -0.17** |                     0.38*** |                         0.56*** |                 0.47*** |                        0.40*** |                      0.41*** |  0.21*** |     0.13** |     0.05 |   0.30*** |    0.04 |         0.17*** |       -0.11* |                           |                 |          |      |        
## UMS Intimacy                        |                         -0.21*** |                               -0.11 |                -0.17*** |                -0.29*** |                       -0.12* |             -0.04 |                -0.08 |            -0.19** |                -9.77e-03 |                     -0.21*** |                       -0.03 |                   -0.14** |                        0.11 |                         0.28*** |                  0.17** |                         0.15** |                      0.17*** |                        0.10 |                        -0.22*** |                   -0.02 |                      -4.54e-03 |                     3.45e-03 |  0.18*** |    0.23*** |  0.44*** |    -0.13* | 0.84*** |         0.48*** |              |                           |                 |          |      |        
## UMS Affiliation                     |                        -4.95e-04 |                              0.17** |                   0.14* |                    0.06 |                        0.14* |            0.15** |               0.15** |               0.08 |                   0.18** |                         0.09 |                      0.17** |                      0.10 |                        0.03 |                       -3.65e-04 |                   -0.01 |                          -0.03 |                    -1.29e-03 |                     0.21*** |                           0.12* |                  0.17** |                        0.24*** |                      0.18*** |  0.33*** |    0.48*** |  0.69*** |   0.26*** | 0.87*** |                 |              |                           |                 |          |      |        
## UMS Sum                             |                           -0.12* |                                0.04 |                   -0.01 |                  -0.12* |                         0.01 |              0.07 |                 0.05 |              -0.06 |                     0.10 |                        -0.06 |                        0.09 |                     -0.02 |                        0.08 |                          0.15** |                    0.08 |                           0.07 |                         0.09 |                     0.19*** |                           -0.05 |                    0.09 |                         0.14** |                        0.11* |  0.31*** |    0.42*** |  0.67*** |      0.09 |         |                 |              |                           |                 |          |      |        
## Dominance                           |                          0.19*** |                             0.30*** |                 0.32*** |                 0.33*** |                      0.24*** |           0.21*** |              0.30*** |            0.28*** |                  0.22*** |                      0.28*** |                     0.28*** |                   0.27*** |                       -0.03 |                        -0.29*** |                 -0.17** |                        -0.17** |                       -0.13* |                     0.23*** |                         0.35*** |                 0.29*** |                        0.30*** |                      0.28*** |  0.47*** |    0.29*** |  0.30*** |           |         |                 |              |                           |                 |          |      |        
## Prestige                            |                            -0.07 |                                0.06 |                    0.02 |                   -0.04 |                         0.07 |              0.03 |                 0.08 |              -0.05 |                     0.07 |                        -0.04 |                       0.13* |                     -0.01 |                        0.10 |                            0.03 |                   -0.01 |                           0.07 |                         0.09 |                     0.20*** |                            0.04 |                  0.15** |                        0.19*** |                        0.11* |  0.45*** |    0.46*** |          |           |         |                 |              |                           |                 |          |      |        
## Leadership                          |                            -0.07 |                               0.13* |                    0.08 |                   -0.02 |                         0.02 |           0.21*** |                 0.07 |               0.04 |                  0.24*** |                         0.02 |                       0.11* |                      0.09 |                        0.03 |                            0.07 |                    0.08 |                           0.05 |                         0.07 |                     0.25*** |                            0.02 |                    0.05 |                         0.14** |                         0.09 |  0.28*** |            |          |           |         |                 |              |                           |                 |          |      |        
## B-PNI                               |                            -0.04 |                             0.21*** |                  0.15** |                    0.10 |                        0.13* |             0.11* |               0.17** |             0.13** |                   0.18** |                         0.09 |                     0.21*** |                   0.20*** |                      0.15** |                           -0.07 |                    0.02 |                           0.03 |                         0.05 |                      0.18** |                         0.20*** |                 0.23*** |                        0.22*** |                      0.22*** |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Ethical_Likelihood_z        |                          0.36*** |                             0.40*** |                 0.48*** |                 0.37*** |                      0.36*** |           0.32*** |              0.44*** |            0.51*** |                  0.26*** |                      0.30*** |                     0.39*** |                   0.43*** |                    -0.26*** |                        -0.32*** |                -0.26*** |                       -0.30*** |                     -0.37*** |                     0.52*** |                         0.65*** |                 0.62*** |                        0.65*** |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Financial_Likelihood_z      |                          0.29*** |                             0.40*** |                 0.45*** |                 0.33*** |                      0.30*** |           0.31*** |              0.58*** |            0.36*** |                  0.28*** |                      0.29*** |                     0.52*** |                   0.32*** |                    -0.18*** |                        -0.26*** |                -0.21*** |                       -0.36*** |                     -0.23*** |                     0.53*** |                         0.63*** |                 0.55*** |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_HS_Likelihood_z             |                          0.40*** |                             0.47*** |                 0.55*** |                 0.41*** |                      0.61*** |           0.34*** |              0.47*** |            0.47*** |                  0.26*** |                      0.36*** |                     0.40*** |                   0.43*** |                    -0.32*** |                        -0.32*** |                -0.40*** |                       -0.36*** |                     -0.29*** |                     0.52*** |                         0.60*** |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Recreation_Likelihood_z     |                          0.36*** |                             0.56*** |                 0.61*** |                 0.62*** |                      0.47*** |           0.41*** |              0.51*** |            0.52*** |                  0.36*** |                      0.58*** |                     0.48*** |                   0.49*** |                    -0.25*** |                        -0.44*** |                -0.26*** |                       -0.28*** |                     -0.29*** |                     0.47*** |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Social_Likelihood_z         |                          0.22*** |                             0.38*** |                 0.41*** |                 0.23*** |                      0.31*** |           0.54*** |              0.33*** |            0.29*** |                  0.48*** |                      0.24*** |                     0.30*** |                   0.28*** |                    -0.31*** |                         -0.14** |                -0.19*** |                        -0.18** |                       -0.13* |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Ethical_Perception_z        |                         -0.89*** |                             -0.17** |                -0.49*** |                -0.51*** |                     -0.39*** |          -0.21*** |             -0.39*** |           -0.64*** |                -3.48e-03 |                     -0.23*** |                     -0.16** |                  -0.21*** |                     0.64*** |                         0.69*** |                 0.73*** |                        0.69*** |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Financial_Perception_z      |                         -0.85*** |                             -0.17** |                -0.48*** |                -0.45*** |                     -0.41*** |          -0.20*** |             -0.54*** |           -0.46*** |                    -0.02 |                      -0.17** |                    -0.21*** |                   -0.17** |                     0.59*** |                         0.65*** |                 0.70*** |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_HS_Perception_z             |                         -0.87*** |                             -0.15** |                -0.47*** |                -0.46*** |                     -0.55*** |           -0.16** |             -0.40*** |           -0.44*** |                     0.03 |                     -0.19*** |                     -0.18** |                    -0.12* |                     0.62*** |                         0.64*** |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Recreation_Perception_z     |                         -0.82*** |                            -0.30*** |                -0.57*** |                -0.77*** |                     -0.46*** |          -0.22*** |             -0.46*** |           -0.56*** |                    -0.08 |                     -0.37*** |                    -0.25*** |                  -0.29*** |                     0.48*** |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Social_Perception_z         |                         -0.78*** |                             -0.16** |                -0.44*** |                -0.35*** |                     -0.35*** |          -0.43*** |             -0.32*** |           -0.40*** |                   -0.13* |                      -0.15** |                      -0.13* |                    -0.13* |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Ethical_Benefit_z           |                          0.22*** |                             0.87*** |                 0.81*** |                 0.62*** |                      0.62*** |           0.62*** |              0.59*** |            0.88*** |                  0.64*** |                      0.69*** |                     0.62*** |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Financial_Benefit_z         |                          0.22*** |                             0.82*** |                 0.77*** |                 0.57*** |                      0.59*** |           0.53*** |              0.93*** |            0.56*** |                  0.54*** |                      0.64*** |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Recreation_Benefit_z        |                          0.26*** |                             0.83*** |                 0.80*** |                 0.88*** |                      0.61*** |           0.53*** |              0.61*** |            0.65*** |                  0.53*** |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_Social_Benefit_z            |                             0.05 |                             0.80*** |                 0.68*** |                 0.41*** |                      0.47*** |           0.95*** |              0.47*** |            0.50*** |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## Ethical Preference                  |                          0.59*** |                             0.76*** |                 0.87*** |                 0.73*** |                      0.67*** |           0.59*** |              0.65*** |                    |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## Financial Preference                |                          0.50*** |                             0.76*** |                 0.83*** |                 0.65*** |                      0.66*** |           0.52*** |                      |                    |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## Social Preference                   |                          0.29*** |                             0.78*** |                 0.76*** |                 0.48*** |                      0.54*** |                   |                      |                    |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## Health and Safety Preference        |                          0.51*** |                             0.76*** |                 0.84*** |                 0.66*** |                              |                   |                      |                    |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## Recreational Preference             |                          0.60*** |                             0.72*** |                 0.84*** |                         |                              |                   |                      |                    |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## General Risk Preference             |                          0.58*** |                             0.92*** |                         |                         |                              |                   |                      |                    |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |        
## DOSPERT_General_Expected_Benefits_z |                          0.23*** |                                     |                         |                         |                              |                   |                      |                    |                          |                              |                             |                           |                             |                                 |                         |                                |                              |                             |                                 |                         |                                |                              |          |            |          |           |         |                 |              |                           |                 |          |      |
ggcorrplot(corr_1, type = "lower", lab = TRUE, insig = "blank", show.diag = TRUE, sig.level = 0.05) + scale_x_discrete(labels = 1:17) + theme(axis.text.x = element_text(angle = 0, hjust = .5))


apa_table(correlation_table_1, landscape = TRUE, row.names = FALSE, placement = "ht", note = "* denotes significance level", caption = "General Correlaiton Matrix | Experiment 2")

B-PNI distribution

## B-PNI distribution

B_PNI_1 <- ggplot(Experiment_2_Analysis_DF, aes(x = Age, y = PNI_z)) +
  geom_point(size = 0.7, alpha = 0.8, position = "jitter") +
  geom_smooth(method = "lm", se = FALSE, size = 2, alpha = 0.8)
ggplotly(B_PNI_1)
## brms SEM attempt

m1 Interaction model

m1_interaction <- brm(DOSPERT_General_Preference_z ~ dominance_z * Gender + prestige_z * Gender + leadership_z * Gender + PNI_z * Gender + Age, data = Experiment_2_Analysis_DF, warmup = 1000, iter = 10000, prior = prior_m1_interaction_gen, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m1_interaction, "m1_interaction.rds")
m1_interaction_no_pni <- brm(DOSPERT_General_Preference_z ~ dominance_z * Gender + prestige_z * Gender + leadership_z * Gender + Age, data = Experiment_2_Analysis_DF, warmup = 1000, iter = 10000, prior = prior_m1_interaction_gen_no_pni, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m1_interaction_no_pni, "m1_interaction_no_pni.rds")
# Model without PNI is favored over model with PNI
m1 <- brm(DOSPERT_General_Preference_z ~ dominance_z + prestige_z + leadership_z + PNI_z + Gender + Age, data = Experiment_2_Analysis_DF, warmup = 1000, iter = 10000, , cores = parallel::detectCores(), backend = "cmdstanr", prior = prior_m1, save_pars = save_pars(all = T))
saveRDS(m1, "m1.rds")
m1_fixef <- MutateHDI::mutate_each_hdi_no_save((m1))


kable(m1_fixef, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter Estimate Est.Error CI (95%)
Intercept 0.73 0.18 0.38 - 1.09
Dominance 0.30 0.05 0.19 - 0.4
Prestige -0.03 0.05 -0.14 - 0.07
Leadership -0.02 0.05 -0.12 - 0.08
PNI -0.04 0.07 -0.17 - 0.08
Gender 0.01 0.09 -0.18 - 0.19
Age -0.02 0.01 -0.04 - -0.01

Model comparison

m1_comparison <- loo(m1, m1_interaction)
m1_comparison

bayes_factor(m1, m1_interaction)

# m1_interaction over m1

m2 multivariate Model with DoPL and DOSPERT + PNI

m2 <- brm(mvbind(DOSPERT_Likelihood_z, DOSPERT_Benefit_z, DOSPERT_Perception_z) ~ dominance_z + prestige_z + leadership_z + PNI_z + Gender + Age, data = Experiment_2_Analysis_DF, warmup = 1000, iter = 10000, prior = prior_m2, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m2, "m2.rds")
m2_fixef <- MutateHDI::mutate_each_hdi_no_save((m2))


kable(m2_fixef, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter Estimate Est.Error CI (95%)
DOSPERTLikelihoodz * Intercept 0.42 0.19 0.05 - 0.79
DOSPERT Benefitz * Intercept 0.86 0.18 0.5 - 1.23
DOSPERT Perceptionz * Intercept -0.30 0.19 -0.68 - 0.08
DOSPERTLikelihoodz * Dominance 0.34 0.05 0.24 - 0.45
DOSPERTLikelihoodz * Prestige 0.10 0.05 -0.01 - 0.2
DOSPERTLikelihoodz * Leadership -0.06 0.05 -0.15 - 0.03
DOSPERTLikelihoodz * PNI 0.04 0.07 -0.1 - 0.17
DOSPERTLikelihoodz * Gender -0.15 0.09 -0.33 - 0.02
DOSPERTLikelihoodz * Age -0.01 0.01 -0.02 - 0
DOSPERT Benefitz * Dominance 0.28 0.05 0.17 - 0.38
DOSPERT Benefitz * Prestige -0.02 0.05 -0.13 - 0.08
DOSPERT Benefitz * Leadership 0.00 0.05 -0.1 - 0.1
DOSPERT Benefitz * PNI 0.00 0.07 -0.13 - 0.13
DOSPERT Benefitz * Gender -0.18 0.09 -0.37 - 0
DOSPERT Benefitz * Age -0.02 0.01 -0.04 - -0.01
DOSPERT Perceptionz * Dominance -0.30 0.05 -0.41 - -0.19
DOSPERT Perceptionz * Prestige 0.07 0.06 -0.04 - 0.18
DOSPERT Perceptionz * Leadership 0.11 0.05 0.01 - 0.21
DOSPERT Perceptionz * PNI 0.15 0.07 0.01 - 0.28
DOSPERT Perceptionz * Gender 0.01 0.10 -0.18 - 0.2
DOSPERT Perceptionz * Age 0.01 0.01 0 - 0.02

Additive Model with DoPL and DOSPERT + PNI Gender Interaction

m2_interaction_gender <- brm(mvbind(DOSPERT_Likelihood_z, DOSPERT_Benefit_z, DOSPERT_Perception_z) ~ dominance_z * Gender + prestige_z * Gender + leadership_z * Gender + PNI_z * Gender + Age, data = Experiment_2_Analysis_DF, warmup = 1000, iter = 10000, prior = prior_m2_interaction_gender, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m2_interaction_gender, "m2_interaction_gender.rds")
m2_interaction_gender_fixef <- MutateHDI::mutate_each_hdi_no_save((m2_interaction_gender))


kable(m2_interaction_gender_fixef, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter Estimate Est.Error CI (95%)
DOSPERTLikelihoodz * Intercept 0.50 0.19 0.12 - 0.88
DOSPERT Benefitz * Intercept 0.89 0.19 0.52 - 1.26
DOSPERT Perceptionz * Intercept -0.28 0.20 -0.67 - 0.1
DOSPERTLikelihoodz * Dominance 0.43 0.06 0.31 - 0.55
DOSPERTLikelihoodz * Gender -0.15 0.09 -0.33 - 0.03
DOSPERTLikelihoodz * Prestige 0.11 0.06 -0.01 - 0.24
DOSPERTLikelihoodz * Leadership -0.08 0.06 -0.19 - 0.03
DOSPERTLikelihoodz * PNI -0.08 0.10 -0.27 - 0.11
DOSPERTLikelihoodz * Age -0.01 0.01 -0.02 - 0
DOSPERTLikelihoodz * Dominance : Gender -0.21 0.09 -0.39 - -0.04
DOSPERTLikelihoodz * Prestige : Gender -0.02 0.09 -0.21 - 0.16
DOSPERTLikelihoodz * Leadership : Gender 0.09 0.09 -0.08 - 0.26
DOSPERTLikelihoodz * Gender: PNI 0.23 0.13 -0.02 - 0.47
DOSPERT Benefitz * Dominance 0.27 0.07 0.14 - 0.4
DOSPERT Benefitz * Gender -0.18 0.09 -0.36 - 0
DOSPERT Benefitz * Prestige -0.02 0.07 -0.14 - 0.11
DOSPERT Benefitz * Leadership -0.03 0.06 -0.15 - 0.09
DOSPERT Benefitz * PNI 0.01 0.10 -0.18 - 0.19
DOSPERT Benefitz * Age -0.03 0.01 -0.04 - -0.01
DOSPERT Benefitz * Dominance : Gender -0.04 0.09 -0.22 - 0.14
DOSPERT Benefitz * Prestige : Gender -0.02 0.09 -0.2 - 0.16
DOSPERT Benefitz * Leadership : Gender 0.09 0.09 -0.08 - 0.26
DOSPERT Benefitz * Gender: PNI 0.01 0.13 -0.24 - 0.26
DOSPERT Perceptionz * Dominance -0.32 0.07 -0.46 - -0.18
DOSPERT Perceptionz * Gender 0.01 0.10 -0.18 - 0.2
DOSPERT Perceptionz * Prestige 0.09 0.07 -0.05 - 0.23
DOSPERT Perceptionz * Leadership 0.07 0.06 -0.05 - 0.2
DOSPERT Perceptionz * PNI 0.06 0.10 -0.14 - 0.26
DOSPERT Perceptionz * Age 0.01 0.01 0 - 0.02
DOSPERT Perceptionz * Dominance : Gender 0.07 0.10 -0.12 - 0.26
DOSPERT Perceptionz * Prestige : Gender -0.04 0.10 -0.24 - 0.15
DOSPERT Perceptionz * Leadership : Gender 0.10 0.09 -0.08 - 0.27
DOSPERT Perceptionz * Gender: PNI 0.15 0.13 -0.1 - 0.41

Model Comparison

m2_comparison <- loo(m2, m2_interaction_gender)
m2_comparison
bayes_factor(m2_interaction_gender, m2)

# m2 over m2_interaction_gender

DOSPERT and DoPL and PNI

m3 <- brm(mvbind(DOSPERT_Ethical_Preference_z, DOSPERT_Financial_Preference_z, DOSPERT_HS_Preference_z, DOSPERT_Recreation_Preference_z, DOSPERT_Social_Preference_z) ~ dominance_z + prestige_z + leadership_z + PNI_z + Gender + Age, data = Experiment_2_Analysis_DF, warmup = 1000, iter = 10000, prior = prior_m3, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m3, "m3.rds")
m3_fixef <- MutateHDI::mutate_each_hdi_no_save((m3))


kable(m3_fixef, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter Estimate Est.Error CI (95%)
DOSPERTEthicalPreference * Intercept 0.31 0.18 -0.05 - 0.67
DOSPERTFinancialPreference * Intercept 0.85 0.18 0.49 - 1.21
DOSPERTHSPreference * Intercept 0.66 0.19 0.29 - 1.02
DOSPERTRecreationPreference * Intercept 0.69 0.18 0.34 - 1.04
DOSPERTSocialPreference * Intercept 0.82 0.19 0.45 - 1.19
DOSPERTEthicalPreference * Dominance 0.36 0.04 0.27 - 0.44
DOSPERTEthicalPreference * Prestige -0.09 0.05 -0.18 - 0.01
DOSPERTEthicalPreference * Leadership -0.02 0.05 -0.11 - 0.07
DOSPERTEthicalPreference * PNI -0.01 0.07 -0.14 - 0.12
DOSPERTEthicalPreference * Gender -0.13 0.09 -0.3 - 0.03
DOSPERTEthicalPreference * Age -0.01 0.01 -0.02 - 0.01
DOSPERTFinancialPreference * Dominance 0.31 0.04 0.22 - 0.4
DOSPERTFinancialPreference * Prestige 0.05 0.05 -0.04 - 0.15
DOSPERTFinancialPreference * Leadership -0.03 0.05 -0.12 - 0.06
DOSPERTFinancialPreference * PNI -0.07 0.07 -0.2 - 0.06
DOSPERTFinancialPreference * Gender -0.23 0.09 -0.4 - -0.05
DOSPERTFinancialPreference * Age -0.02 0.01 -0.03 - -0.01
DOSPERTHSPreference * Dominance 0.29 0.04 0.21 - 0.38
DOSPERTHSPreference * Prestige 0.07 0.05 -0.03 - 0.16
DOSPERTHSPreference * Leadership -0.08 0.05 -0.17 - 0.02
DOSPERTHSPreference * PNI -0.07 0.07 -0.2 - 0.05
DOSPERTHSPreference * Gender -0.12 0.09 -0.29 - 0.05
DOSPERTHSPreference * Age -0.02 0.01 -0.03 - -0.01
DOSPERTRecreationPreference * Dominance 0.43 0.04 0.35 - 0.52
DOSPERTRecreationPreference * Prestige -0.07 0.05 -0.16 - 0.02
DOSPERTRecreationPreference * Leadership -0.08 0.04 -0.16 - 0.01
DOSPERTRecreationPreference * PNI -0.11 0.06 -0.24 - 0.01
DOSPERTRecreationPreference * Gender -0.04 0.08 -0.21 - 0.12
DOSPERTRecreationPreference * Age -0.02 0.01 -0.03 - -0.01
DOSPERTSocialPreference * Dominance 0.22 0.05 0.12 - 0.31
DOSPERTSocialPreference * Prestige -0.03 0.05 -0.13 - 0.07
DOSPERTSocialPreference * Leadership 0.16 0.05 0.06 - 0.26
DOSPERTSocialPreference * PNI -0.10 0.07 -0.23 - 0.03
DOSPERTSocialPreference * Gender -0.17 0.09 -0.35 - 0.01
DOSPERTSocialPreference * Age -0.02 0.01 -0.03 - -0.01

m3 Interaction Gender DOSPERT, DoPL, and PNI

m3_interaction_gender <- brm(mvbind(DOSPERT_Ethical_Preference_z, DOSPERT_Financial_Preference_z, DOSPERT_HS_Preference_z, DOSPERT_Recreation_Preference_z, DOSPERT_Social_Preference_z) ~ dominance_z * Gender + prestige_z * Gender + leadership_z * Gender + PNI_z * Gender + Age, data = Experiment_2_Analysis_DF, warmup = 1000, iter = 10000, prior = prior_m3_interaction_gender, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")

saveRDS(m3_interaction_gender, "m3_interaction_gender.rds")
m3_interaction_gender_fixef <- MutateHDI::mutate_each_hdi_no_save((m3_interaction_gender))


kable(m3_interaction_gender_fixef, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter Estimate Est.Error CI (95%)
DOSPERTEthicalPreference * Intercept 0.34 0.19 -0.03 - 0.71
DOSPERTFinancialPreference * Intercept 0.87 0.19 0.5 - 1.24
DOSPERTHSPreference * Intercept 0.68 0.19 0.31 - 1.06
DOSPERTRecreationPreference * Intercept 0.75 0.18 0.39 - 1.11
DOSPERTSocialPreference * Intercept 0.82 0.19 0.45 - 1.19
DOSPERTEthicalPreference * Dominance 0.40 0.07 0.26 - 0.53
DOSPERTEthicalPreference * Gender -0.13 0.09 -0.3 - 0.03
DOSPERTEthicalPreference * Prestige -0.22 0.07 -0.35 - -0.09
DOSPERTEthicalPreference * Leadership 0.00 0.06 -0.12 - 0.13
DOSPERTEthicalPreference * PNI 0.09 0.10 -0.1 - 0.28
DOSPERTEthicalPreference * Age -0.01 0.01 -0.02 - 0.01
DOSPERTEthicalPreference * Dominance : Gender -0.12 0.09 -0.3 - 0.05
DOSPERTEthicalPreference * Prestige : Gender 0.14 0.09 -0.04 - 0.31
DOSPERTEthicalPreference * Leadership : Gender -0.03 0.08 -0.19 - 0.14
DOSPERTEthicalPreference * Gender: PNI -0.13 0.12 -0.37 - 0.12
DOSPERTFinancialPreference * Dominance 0.38 0.07 0.24 - 0.52
DOSPERTFinancialPreference * Gender -0.24 0.09 -0.41 - -0.07
DOSPERTFinancialPreference * Prestige -0.02 0.07 -0.16 - 0.11
DOSPERTFinancialPreference * Leadership 0.04 0.07 -0.09 - 0.17
DOSPERTFinancialPreference * PNI -0.13 0.10 -0.32 - 0.06
DOSPERTFinancialPreference * Age -0.02 0.01 -0.03 - -0.01
DOSPERTFinancialPreference * Dominance : Gender -0.11 0.09 -0.29 - 0.07
DOSPERTFinancialPreference * Prestige : Gender 0.07 0.09 -0.11 - 0.25
DOSPERTFinancialPreference * Leadership : Gender -0.12 0.09 -0.29 - 0.05
DOSPERTFinancialPreference * Gender: PNI 0.13 0.12 -0.12 - 0.37
DOSPERTHSPreference * Dominance 0.35 0.07 0.2 - 0.49
DOSPERTHSPreference * Gender -0.12 0.09 -0.29 - 0.06
DOSPERTHSPreference * Prestige -0.04 0.07 -0.17 - 0.1
DOSPERTHSPreference * Leadership 0.00 0.07 -0.13 - 0.14
DOSPERTHSPreference * PNI -0.07 0.10 -0.27 - 0.12
DOSPERTHSPreference * Age -0.02 0.01 -0.03 - -0.01
DOSPERTHSPreference * Dominance : Gender -0.14 0.09 -0.33 - 0.04
DOSPERTHSPreference * Prestige : Gender 0.13 0.09 -0.05 - 0.31
DOSPERTHSPreference * Leadership : Gender -0.13 0.09 -0.3 - 0.04
DOSPERTHSPreference * Gender: PNI 0.03 0.13 -0.21 - 0.28
DOSPERTRecreationPreference * Dominance 0.56 0.07 0.43 - 0.69
DOSPERTRecreationPreference * Gender -0.05 0.08 -0.22 - 0.11
DOSPERTRecreationPreference * Prestige -0.20 0.07 -0.33 - -0.08
DOSPERTRecreationPreference * Leadership -0.01 0.06 -0.13 - 0.12
DOSPERTRecreationPreference * PNI -0.13 0.09 -0.31 - 0.05
DOSPERTRecreationPreference * Age -0.02 0.01 -0.03 - -0.01
DOSPERTRecreationPreference * Dominance : Gender -0.26 0.09 -0.43 - -0.09
DOSPERTRecreationPreference * Prestige : Gender 0.17 0.09 0 - 0.34
DOSPERTRecreationPreference * Leadership : Gender -0.10 0.08 -0.26 - 0.06
DOSPERTRecreationPreference * Gender: PNI 0.06 0.12 -0.18 - 0.3
DOSPERTSocialPreference * Dominance 0.20 0.07 0.05 - 0.34
DOSPERTSocialPreference * Gender -0.17 0.09 -0.36 - 0
DOSPERTSocialPreference * Prestige -0.12 0.07 -0.27 - 0.02
DOSPERTSocialPreference * Leadership 0.16 0.07 0.02 - 0.29
DOSPERTSocialPreference * PNI 0.05 0.10 -0.14 - 0.24
DOSPERTSocialPreference * Age -0.02 0.01 -0.03 - -0.01
DOSPERTSocialPreference * Dominance : Gender 0.01 0.10 -0.18 - 0.19
DOSPERTSocialPreference * Prestige : Gender 0.07 0.09 -0.12 - 0.25
DOSPERTSocialPreference * Leadership : Gender 0.04 0.09 -0.14 - 0.22
DOSPERTSocialPreference * Gender: PNI -0.23 0.13 -0.47 - 0.02

Model Comparison

m3_comparison <- loo(m3, m3_interaction_gender)
m3_comparison
bayes_factor(m3_interaction_gender, m3)

# m3 over m3_interaction_gender

Mediation

Mediation Model attempt

mediation_model.1 <- bf(DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + PNI_z)
mediation_model.2 <- bf(DOSPERT_Benefit_z ~ DOSPERT_Likelihood_z + DOSPERT_Perception_z + PNI_z)

## cyclical in mediation_model .1 and .2

mediation_model_1 <- brm(mediation_model.1 + mediation_model.2 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))

mediation_model.3 <- bf(DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + dominance_z)
mediation_model.4 <- bf(DOSPERT_Benefit_z ~ DOSPERT_Likelihood_z + DOSPERT_Perception_z + dominance_z)

## cyclical in mediation_model .3 and .4

mediation_model_2 <- brm(mediation_model.3 + mediation_model.4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))


mediation_model.5 <- bf(DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + prestige_z)
mediation_model.6 <- bf(DOSPERT_Benefit_z ~ DOSPERT_Likelihood_z + DOSPERT_Perception_z + prestige_z)
mediation_model_3 <- brm(mediation_model.5 + mediation_model.6 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))

## cyclical in mediation_model .5 and .6

mediation_model.7 <- bf(DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + leadership_z)
mediation_model.8 <- bf(DOSPERT_Benefit_z ~ DOSPERT_Likelihood_z + DOSPERT_Perception_z + leadership_z)

## cyclical in mediation_model .7 and .8

mediation_model_4 <- brm(mediation_model.7 + mediation_model.8 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))
mediation_loo <- brms::loo(mediation_model_1, mediation_model_2, mediation_model_3, mediation_model_4)
mediation_comparison <- bayesfactor_models(mediation_model_1, mediation_model_2, mediation_model_3, mediation_model_4, denominator = mediation_model_4)
saveRDS(mediation_loo, "mediation_loo.rds")
saveRDS(mediation_comparison, "mediation_comparison.rds")
# I think this indicates that model 4 with dominance is the strongest predictor
mediation_loo
## Output of model 'mediation_model_1':
## 
## Computed from 36000 by 287 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo   -688.4 23.5
## p_loo        11.7  1.5
## looic      1376.8 47.0
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model_2':
## 
## Computed from 36000 by 287 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo   -687.5 23.1
## p_loo        11.4  1.4
## looic      1375.0 46.1
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model_3':
## 
## Computed from 36000 by 287 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo   -690.0 23.2
## p_loo        11.7  1.5
## looic      1380.1 46.4
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model_4':
## 
## Computed from 36000 by 287 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo   -694.0 23.9
## p_loo        11.6  1.5
## looic      1388.0 47.7
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Model comparisons:
##                   elpd_diff se_diff
## mediation_model_2  0.0       0.0   
## mediation_model_1 -0.9       3.4   
## mediation_model_3 -2.5       4.7   
## mediation_model_4 -6.5       3.2
mediation_comparison
## Bayes Factors for Model Comparison
## 
##     Model     BF
## [1]       270.55
## [2]       558.76
## [3]        50.69
## 
## * Against Denominator: [4]
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)

m_model_1 <- bf(DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + DOSPERT_Perception_z + PNI_z)
m_model_2 <- bf(DOSPERT_Benefit_z ~ PNI_z)

Mediation_comparison_1 <- brm(m_model_1 + m_model_2 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", save_pars = save_pars(all = TRUE))

summary(Mediation_comparison_1)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + DOSPERT_Perception_z + PNI_z 
##          DOSPERT_Benefit_z ~ PNI_z 
##    Data: mediation_dataset (Number of observations: 287) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                         Estimate Est.Error l-95% CI u-95% CI
## DOSPERTLikelihoodz_Intercept                0.00      0.05    -0.09     0.09
## DOSPERTBenefitz_Intercept                  -0.03      0.06    -0.14     0.09
## DOSPERTLikelihoodz_DOSPERT_Benefit_z        0.45      0.05     0.35     0.54
## DOSPERTLikelihoodz_DOSPERT_Perception_z    -0.31      0.05    -0.40    -0.22
## DOSPERTLikelihoodz_PNI_z                    0.18      0.05     0.09     0.27
## DOSPERTBenefitz_PNI_z                       0.21      0.06     0.09     0.32
##                                         Rhat Bulk_ESS Tail_ESS
## DOSPERTLikelihoodz_Intercept            1.00    64087    26079
## DOSPERTBenefitz_Intercept               1.00    59917    25430
## DOSPERTLikelihoodz_DOSPERT_Benefit_z    1.00    58360    29348
## DOSPERTLikelihoodz_DOSPERT_Perception_z 1.00    57925    27793
## DOSPERTLikelihoodz_PNI_z                1.00    61032    28172
## DOSPERTBenefitz_PNI_z                   1.00    63745    26697
## 
## Family Specific Parameters: 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_DOSPERTLikelihoodz     0.77      0.03     0.71     0.84 1.00    60971
## sigma_DOSPERTBenefitz        0.97      0.04     0.89     1.05 1.00    62137
##                          Tail_ESS
## sigma_DOSPERTLikelihoodz    27436
## sigma_DOSPERTBenefitz       27162
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Mediation_comparison_1_fixef <- MutateHDI::mutate_each_hdi_no_save((Mediation_comparison_1))


kable(Mediation_comparison_1_fixef, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter Estimate Est.Error CI (95%)
DOSPERTLikelihoodz * Intercept 0.00 0.05 -0.09 - 0.09
DOSPERT Benefitz * Intercept -0.03 0.06 -0.14 - 0.09
DOSPERTLikelihoodz * DOSPERT * Benefit 0.45 0.05 0.35 - 0.54
DOSPERTLikelihoodz * DOSPERT * Perception -0.31 0.05 -0.4 - -0.22
DOSPERTLikelihoodz * PNI 0.18 0.05 0.09 - 0.27
DOSPERT Benefitz * PNI 0.21 0.06 0.09 - 0.32

m_model_3 <- bf(DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + PNI_z + dominance_z)
m_model_4 <- bf(DOSPERT_Benefit_z ~ PNI_z + dominance_z)

Mediation_comparison_2 <- brm(m_model_3 + m_model_4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(Mediation_comparison_2, "Mediation_comparison_2.rds")
summary(Mediation_comparison_2)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + PNI_z + dominance_z 
##          DOSPERT_Benefit_z ~ PNI_z + dominance_z 
##    Data: mediation_dataset (Number of observations: 287) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                         Estimate Est.Error l-95% CI u-95% CI
## DOSPERTLikelihoodz_Intercept                0.00      0.05    -0.09     0.09
## DOSPERTBenefitz_Intercept                  -0.03      0.06    -0.14     0.08
## DOSPERTLikelihoodz_DOSPERT_Benefit_z        0.43      0.05     0.33     0.53
## DOSPERTLikelihoodz_DOSPERT_Perception_z    -0.29      0.05    -0.38    -0.19
## DOSPERTLikelihoodz_PNI_z                    0.13      0.05     0.03     0.23
## DOSPERTLikelihoodz_dominance_z              0.11      0.05     0.01     0.22
## DOSPERTBenefitz_PNI_z                       0.08      0.06    -0.04     0.21
## DOSPERTBenefitz_dominance_z                 0.26      0.06     0.13     0.38
##                                         Rhat Bulk_ESS Tail_ESS
## DOSPERTLikelihoodz_Intercept            1.00    70382    26642
## DOSPERTBenefitz_Intercept               1.00    62107    28821
## DOSPERTLikelihoodz_DOSPERT_Benefit_z    1.00    59127    29200
## DOSPERTLikelihoodz_DOSPERT_Perception_z 1.00    58904    28855
## DOSPERTLikelihoodz_PNI_z                1.00    47850    29965
## DOSPERTLikelihoodz_dominance_z          1.00    44939    31198
## DOSPERTBenefitz_PNI_z                   1.00    47336    30081
## DOSPERTBenefitz_dominance_z             1.00    47167    29328
## 
## Family Specific Parameters: 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_DOSPERTLikelihoodz     0.76      0.03     0.70     0.83 1.00    67785
## sigma_DOSPERTBenefitz        0.94      0.04     0.87     1.02 1.00    61505
##                          Tail_ESS
## sigma_DOSPERTLikelihoodz    26416
## sigma_DOSPERTBenefitz       27727
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Mediation_comparison_2_fixef <- MutateHDI::mutate_each_hdi_no_save((Mediation_comparison_2))


kable(Mediation_comparison_2_fixef, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter Estimate Est.Error CI (95%)
DOSPERTLikelihoodz * Intercept 0.00 0.05 -0.09 - 0.09
DOSPERT Benefitz * Intercept -0.03 0.06 -0.14 - 0.08
DOSPERTLikelihoodz * DOSPERT * Benefit 0.43 0.05 0.33 - 0.53
DOSPERTLikelihoodz * DOSPERT * Perception -0.29 0.05 -0.38 - -0.19
DOSPERTLikelihoodz * PNI 0.13 0.05 0.03 - 0.23
DOSPERTLikelihoodz * Dominance 0.11 0.05 0.01 - 0.22
DOSPERT Benefitz * PNI 0.08 0.06 -0.04 - 0.21
DOSPERT Benefitz * Dominance 0.26 0.06 0.13 - 0.38

m_model_5 <- bf(DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + PNI_z + dominance_z + leadership_z + prestige_z)
m_model_6 <- bf(DOSPERT_Benefit_z ~ PNI_z + dominance_z + leadership_z + prestige_z)

Mediation_comparison_3 <- brm(m_model_5 + m_model_6 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", save_pars = save_pars(all = TRUE), cores = parallel::detectCores())
model_blavaan_test <- "
DOSPERT_Likelihood_z ~ DOSPERT_Benefit_z + DOSPERT_Perception_z + PNI_z + dominance_z
DOSPERT_Benefit_z ~ PNI_z + dominance_z
"

fit2 <- sem(model_blavaan_test, data = mediation_dataset)

graph_sem(fit2)