#Contoh
#Dataset
library(readxl)
data_lat <- read_excel("latihan.xlsx")
#Identifikasi Faktor 1 dan Faktor 2
data_lat$Faktor1 = as.factor(data_lat$Faktor1)
data_lat$Faktor2 = as.factor(data_lat$Faktor2)
data_lat
## # A tibble: 32 x 4
## y1 y2 Faktor1 Faktor2
## <dbl> <dbl> <fct> <fct>
## 1 7.8 90.4 A1 B1
## 2 7.1 88.9 A1 B1
## 3 7.89 85.9 A1 B1
## 4 7.82 88.8 A1 B1
## 5 9 82.5 A1 B2
## 6 8.43 92.4 A1 B2
## 7 7.65 82.4 A1 B2
## 8 7.7 87.1 A1 B2
## 9 7.28 79.6 A1 B3
## 10 8.96 95.1 A1 B3
## # ... with 22 more rows
#Uji Homogenitas
library(biotools)
## Loading required package: MASS
## ---
## biotools version 4.2
boxM(data_lat[,1:2],data_lat$Faktor1)
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: data_lat[, 1:2]
## Chi-Sq (approx.) = 9.5304, df = 3, p-value = 0.02301
boxM(data_lat[,1:2],data_lat$Faktor2)
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: data_lat[, 1:2]
## Chi-Sq (approx.) = 9.1484, df = 9, p-value = 0.4237
boxM(data_lat[,1:2],paste(data_lat$Faktor1,data_lat$Faktor2))
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: data_lat[, 1:2]
## Chi-Sq (approx.) = 24.954, df = 21, p-value = 0.2492
library(RVAideMemoire)
## *** Package RVAideMemoire v 0.9-81-2 ***
mshapiro.test(data_lat[data_lat$Faktor1=="A1",-c(3,4)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (y1,y2)
## W = 0.88251, p-value = 0.04246
mshapiro.test(data_lat[data_lat$Faktor1=="A2",-c(3,4)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (y1,y2)
## W = 0.93586, p-value = 0.3014
mshapiro.test(data_lat[data_lat$Faktor2=="B1",-c(3,4)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (y1,y2)
## W = 0.82165, p-value = 0.04857
mshapiro.test(data_lat[data_lat$Faktor2=="B2",-c(3,4)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (y1,y2)
## W = 0.91803, p-value = 0.4141
mshapiro.test(data_lat[data_lat$Faktor2=="B3",-c(3,4)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (y1,y2)
## W = 0.80141, p-value = 0.02964
mshapiro.test(data_lat[data_lat$Faktor2=="B4",-c(3,4)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (y1,y2)
## W = 0.91017, p-value = 0.3553
result <- manova(cbind(y1,y2) ~ Faktor1 * Faktor2, data=data_lat)
summary(result, test="Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## Faktor1 1 0.47515 12.7031 2 23 0.0001921 ***
## Faktor2 3 0.69062 1.5588 6 46 0.1808302
## Faktor1:Faktor2 3 0.93197 0.2749 6 46 0.9459179
## Residuals 24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#cara lain
X <- as.matrix(data_lat[,c("y1","y2")])
mod <- lm(X ~ Faktor1*Faktor2,data=data_lat)
library(car)
## Loading required package: carData
Manova(mod, test="Wilks")
##
## Type II MANOVA Tests: Wilks test statistic
## Df test stat approx F num Df den Df Pr(>F)
## Faktor1 1 0.47515 12.7031 2 23 0.0001921 ***
## Faktor2 3 0.69062 1.5588 6 46 0.1808302
## Faktor1:Faktor2 3 0.93197 0.2749 6 46 0.9459179
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Tanpa Interaksi
result <- manova(cbind(y1,y2) ~ Faktor1 + Faktor2,
data=data_lat)
summary(result, test="Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## Faktor1 1 0.49063 13.4963 2 26 9.547e-05 ***
## Faktor2 3 0.69325 1.7423 6 52 0.1297
## Residuals 27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(readxl)
data_tugas <- read_excel("penugasan.xlsx")
data_tugas$faktor1 = as.factor(data_tugas$faktor1)
data_tugas$faktor2 = as.factor(data_tugas$faktor2)
data_tugas
## # A tibble: 24 x 4
## faktor1 faktor2 Keramahan Optimisme
## <fct> <fct> <dbl> <dbl>
## 1 laki-laki kaya 5 3
## 2 laki-laki kaya 4 6
## 3 laki-laki kaya 3 4
## 4 laki-laki kaya 2 4
## 5 laki-laki menengah 4 6
## 6 laki-laki menengah 3 6
## 7 laki-laki menengah 5 4
## 8 laki-laki menengah 5 5
## 9 laki-laki miskin 7 5
## 10 laki-laki miskin 4 3
## # ... with 14 more rows
library(biotools)
boxM(data_tugas[,3:4],data_tugas$faktor1)
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: data_tugas[, 3:4]
## Chi-Sq (approx.) = 5.4869, df = 3, p-value = 0.1394
boxM(data_tugas[,3:4],data_tugas$faktor2)
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: data_tugas[, 3:4]
## Chi-Sq (approx.) = 8.5511, df = 6, p-value = 0.2004
boxM(data_tugas[,3:4],paste(data_tugas$faktor1,data_tugas$faktor2))
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: data_tugas[, 3:4]
## Chi-Sq (approx.) = 11.914, df = 15, p-value = 0.6855
library(RVAideMemoire)
mshapiro.test(data_tugas[data_tugas$faktor1=="laki-laki",-c(1,2)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (Keramahan,Optimisme)
## W = 0.92831, p-value = 0.3625
mshapiro.test(data_tugas[data_tugas$faktor1=="perempuan",-c(1,2)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (Keramahan,Optimisme)
## W = 0.88814, p-value = 0.1115
mshapiro.test(data_tugas[data_tugas$faktor2=="kaya",-c(1,2)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (Keramahan,Optimisme)
## W = 0.91566, p-value = 0.3956
mshapiro.test(data_tugas[data_tugas$faktor2=="menengah",-c(1,2)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (Keramahan,Optimisme)
## W = 0.89875, p-value = 0.2815
mshapiro.test(data_tugas[data_tugas$faktor2=="miskin",-c(1,2)])
##
## Multivariate Shapiro-Wilk normality test
##
## data: (Keramahan,Optimisme)
## W = 0.97113, p-value = 0.9068
result <- manova(cbind(Keramahan,Optimisme) ~ faktor1 * faktor2,
data=data_tugas)
summary(result, test="Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## faktor1 1 0.58825 5.9496 2 17 0.010997 *
## faktor2 2 0.50412 3.4716 4 34 0.017562 *
## faktor1:faktor2 2 0.38703 5.1630 4 34 0.002325 **
## Residuals 18
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#cara lain
X <- as.matrix(data_tugas[,c("Keramahan","Optimisme")])
mod <- lm(X ~ faktor1*faktor2,data=data_tugas)
library(car)
Manova(mod, test="Wilks")
##
## Type II MANOVA Tests: Wilks test statistic
## Df test stat approx F num Df den Df Pr(>F)
## faktor1 1 0.58825 5.9496 2 17 0.010997 *
## faktor2 2 0.50412 3.4716 4 34 0.017562 *
## faktor1:faktor2 2 0.38703 5.1630 4 34 0.002325 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Tanpa Interaksi
result <- manova(cbind(Keramahan,Optimisme) ~ faktor1 + faktor2,
data=data_tugas)
summary(result, test="Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## faktor1 1 0.71659 3.7572 2 19 0.04218 *
## faktor2 2 0.61231 2.6406 4 38 0.04859 *
## Residuals 20
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1