Overview

In this technical assignment, you will have the opportunity to apply the statistical knowledge that you’ve learned so far. The assignment will require you to use R Studio and import data. We recognize that doing both of these things may be new to you, so please make sure to ask your Lab TA, lecture TA, or Dr. Woodward any questions that may come up. Though the assignment is not due until Friday, it is strongly recommended that you start the assignment before then.

Getting Started:

  1. Download the data science salary data from Canvas.
  2. Open this data in R Studio (Hint: Select “Import Data” from the Global Environment and choose “From Text Base.” It will be helpful for you to know where your downloaded data went on your computer). Make sure you copy the import code into your R Markdown file.
#make sure that you copy the code to import data here (Hint: It includes read.csv() or read_csv). Note: understanding file paths isn't always the easiest, if you have ANY questions, please let us know
salaries <- read.csv("/cloud/project/salaries.csv")

Understanding your Data:

  1. View your dataset in R Studio. (Do NOT write this code in your markdown file. just in the console.) What do you notice about it? (e.g. What variables are in the file?)

Write your text here The data looks like a reflection of the salaries of different jobs, along with their title, company size and location.

  1. Print the salary_in_usd column. (Hint: To print variable values, you only need to write data$column in a code chunk)
#your code here
salaries$salary_in_usd
##   [1]  79833 260000 109024  20000 150000  72000 190000  35735 135000 125000
##  [11]  51321  40481  39916  87000  85000   8000  41689 114047   5707  56000
##  [21]  43331   6072  47899  98000 115000 325000  42000  33511 100000 117104
##  [31]  59303  70000  68428 450000  46759  74130 103000 250000  10000 138000
##  [41]  45760  79833  50180 106000 112872  15966  76958 188000 105000  70139
##  [51]   6072  91000  45896  54742  60000 148261  38776 118000 120000 138350
##  [61] 110000 130800  21669 412000  45618  62726  49268 190200 105000  91237
##  [71]  62726  42197  82528 150000 235000  53192 100000   5409 270000  80000
##  [81]  79197 140000  54238  47282 153667  28476  59102 110000 170000  80000
##  [91]  88654  76833  19609 276000  29751  89294  12000 450000  70000  95746
## [101]  75000 150000  36259  62000  73000  51519 187442 115000 150000  30428
## [111]  94564 113476 103160  12000  45391 225000  50000  40189  90000 200000
## [121]  60000 200000  50000 110037  10354 151000 120000   9466  20000  40570
## [131] 100000  49646  38400  24000 100000  90000  63711  77364 220000  80000
## [141] 135000 240000 150000  82500 100000  82744  62649  90000 153000 160000
## [151] 168000 150000  75774  13400 144000 127221 119059 423000 120000 125000
## [161] 230000  85000  28369  63831 130026 165000  80000 250000  55000 150000
## [171] 170000  82528  60000 235000  60757 174000   2859  40038  81000   5679
## [181]  22611  90734  26005  61896  12000   4000  50000  69741  76833  74000
## [191] 152000  21844  18000 174000  96113 147000   9272  24342  54094  90000
## [201]  61467 195000  37825  50000 160000  12901 200000 165000  20000 120000
## [211]  24823  56738  66022   5882  24823 185000  28609  90734  88654 140000
## [221]  46597 116914  33808  56256 225000 416000  87738  88654 135000  71786
## [231]  16228 256000 200000 200000 180000 110000  63810  46809   4000  21637
## [241] 103691  80000 110000 165000  18053  72212  36643  12103  96282 170000
## [251] 115000  90000 600000  28399  93000  99703 200000 173762 185000 141846
## [261] 130000  63831  16904  66265  25532 160000  93150 111775  28016  65013
## [271]  72500  18907  76833  85000  77684 100000  58000  55000  20171  59102
## [281] 112000 100000  69741 105000  69999  94665 102839 109000  51064 135000
## [291] 155000 120600 130000  90000 170000 150000 102100  84900 136620  99360
## [301] 117789 104702 146000 123000  52351  99000 116000 106260 126500 242000
## [311] 200000  65438  39263  78526  52351 165220  45807 120160  90320 181940
## [321] 132320 220110 160080 180000 120000 124190 130000 110000 170000 115500
## [331] 112900  90320 112900  90320 165400 132320 167000 243900 136600 109280
## [341] 128875  93700 224000 167875 175000 156600 108800  95550 113000 135000
## [351] 161342 137141 167000 123000  78526  65438 150000 211500 192400  90700
## [361] 130000  61300 130000  61300 160000 138600 136000  58000 135000 170000
## [371] 123000 189650 164996  54957  54957 118187 132000 165400 208775 147800
## [381] 136994 101570 128875  93700  79039 132320  37300 164000 155000 124333
## [391]  98158 120000 112900  90320 145000 105400  87932 117789 215300 158200
## [401] 209100 154600 115934  81666 175000  98158  58000 183600  52351 180000
## [411]  71982  45807  65949  49461  78526  58894 260000  60000  63900 160000
## [421] 112300 241000 159000 180000  80000  82900 100800  49461 140400  39263
## [431]  43966  32974  87932  76940 104702  91614  65949  87932 189650 164996
## [441]  43966  32974  98158  78526 215300  76940 209100 154600 180000  21983
## [451]  80000  78791 196979 120000 125000  37236 105000  87932  18442  31615
## [461]  58255 100000  54957  18442 162674 120000 144000 104890 100000 140000
## [471] 135000  50000 220000 140000 183228  91614 185100 220000 200000 120000
## [481] 120000  65000 324000 216000 210000 120000 230000 100000 100000  31875
## [491] 200000  75000  35590  78791 100000 153000  58035 165000  93427  52396
## [501]  62651  32974  40000  87425 115000  86703  75000  64849 120000 157000
## [511] 150000  70912  65000  71444  20000  48000 152500  68147 122346 380000
## [521]  69336  10000  20000 405000 135000 177000  78000 135000 100000  90320
## [531]  85000  75000 214000 192600 266400 213120 112900 155000 141300 102100
## [541] 115934  81666 206699  99100 130000 115000 110500 130000  99050 160000
## [551] 205300 140400 176000 144000 200100 160000 145000  70500 205300 140400
## [561] 205300 184700 175100 140250 116150  54000 170000  65438  80000 140000
## [571] 210000 140000 100000  69000 210000 140000 210000 150075 100000  25000
## [581] 126500 106260 220110 160080 105000 110925  45807 140000  99000  60000
## [591] 192564 144854 230000 150000 150260 109280 210000 170000 160000 130000
## [601]  67000  52000 154000 126000 129000 150000 200000
  1. What type of information do you think is contained in this variable? (There is no one correct answer- I haven’t told you what these values mean. We want you to think critically about the information being provided to you.)

Your explanation goes here The information in this column seems to be the yearly salariesof the participants in this study.

Standard Scores and Z scores

  1. Create a graph of the salary_in_usd variable. (Hint: remember to use the ggplot library)
#your code goes here
library(ggplot2)

ggplot(salaries, aes(salary_in_usd))+geom_boxplot()

  1. calculate z scores for all salary_in_usd scores.
#your code goes here
scale(salaries$salary_in_usd)
##                 [,1]
##   [1,] -4.575271e-01
##   [2,]  2.081565e+00
##   [3,] -4.613862e-02
##   [4,] -1.300753e+00
##   [5,]  5.313358e-01
##   [6,] -5.679175e-01
##   [7,]  1.095055e+00
##   [8,] -1.079000e+00
##   [9,]  3.199409e-01
##  [10,]  1.790110e-01
##  [11,] -8.593465e-01
##  [12,] -1.012114e+00
##  [13,] -1.020077e+00
##  [14,] -3.565226e-01
##  [15,] -3.847086e-01
##  [16,] -1.469869e+00
##  [17,] -9.950901e-01
##  [18,]  2.465047e-02
##  [19,] -1.502184e+00
##  [20,] -7.934054e-01
##  [21,] -9.719495e-01
##  [22,] -1.497040e+00
##  [23,] -9.075727e-01
##  [24,] -2.014997e-01
##  [25,]  3.808110e-02
##  [26,]  2.997609e+00
##  [27,] -9.907072e-01
##  [28,] -1.110343e+00
##  [29,] -1.733138e-01
##  [30,]  6.773275e-02
##  [31,] -7.468562e-01
##  [32,] -5.961035e-01
##  [33,] -6.182577e-01
##  [34,]  4.759233e+00
##  [35,] -9.236387e-01
##  [36,] -5.378994e-01
##  [37,] -1.310348e-01
##  [38,]  1.940635e+00
##  [39,] -1.441683e+00
##  [40,]  3.622199e-01
##  [41,] -9.377176e-01
##  [42,] -4.575271e-01
##  [43,] -8.754266e-01
##  [44,] -8.875582e-02
##  [45,]  8.091211e-03
##  [46,] -1.357604e+00
##  [47,] -4.980445e-01
##  [48,]  1.066869e+00
##  [49,] -1.028488e-01
##  [50,] -5.941446e-01
##  [51,] -1.497040e+00
##  [52,] -3.001507e-01
##  [53,] -9.358009e-01
##  [54,] -8.111343e-01
##  [55,] -7.370334e-01
##  [56,]  5.068281e-01
##  [57,] -1.036143e+00
##  [58,]  8.036007e-02
##  [59,]  1.085460e-01
##  [60,]  3.671524e-01
##  [61,] -3.238386e-02
##  [62,]  2.607503e-01
##  [63,] -1.277232e+00
##  [64,]  4.223699e+00
##  [65,] -9.397188e-01
##  [66,] -6.986159e-01
##  [67,] -8.882794e-01
##  [68,]  1.097874e+00
##  [69,] -1.028488e-01
##  [70,] -2.968106e-01
##  [71,] -6.986159e-01
##  [72,] -9.879309e-01
##  [73,] -4.195465e-01
##  [74,]  5.313358e-01
##  [75,]  1.729240e+00
##  [76,] -8.329785e-01
##  [77,] -1.733138e-01
##  [78,] -1.506384e+00
##  [79,]  2.222495e+00
##  [80,] -4.551736e-01
##  [81,] -4.664903e-01
##  [82,]  3.904059e-01
##  [83,] -8.182372e-01
##  [84,] -9.162681e-01
##  [85,]  5.830148e-01
##  [86,] -1.181301e+00
##  [87,] -7.496889e-01
##  [88,] -3.238386e-02
##  [89,]  8.131956e-01
##  [90,] -4.551736e-01
##  [91,] -3.332128e-01
##  [92,] -4.998061e-01
##  [93,] -1.306263e+00
##  [94,]  2.307053e+00
##  [95,] -1.163332e+00
##  [96,] -3.241933e-01
##  [97,] -1.413497e+00
##  [98,]  4.759233e+00
##  [99,] -5.961035e-01
## [100,] -2.332653e-01
## [101,] -5.256385e-01
## [102,]  5.313358e-01
## [103,] -1.071615e+00
## [104,] -7.088474e-01
## [105,] -5.538245e-01
## [106,] -8.565561e-01
## [107,]  1.059006e+00
## [108,]  3.808110e-02
## [109,]  5.313358e-01
## [110,] -1.153791e+00
## [111,] -2.499233e-01
## [112,]  1.660338e-02
## [113,] -1.287799e-01
## [114,] -1.413497e+00
## [115,] -9.429179e-01
## [116,]  1.588310e+00
## [117,] -8.779633e-01
## [118,] -1.016230e+00
## [119,] -3.142437e-01
## [120,]  1.235985e+00
## [121,] -7.370334e-01
## [122,]  1.235985e+00
## [123,] -8.779633e-01
## [124,] -3.186242e-02
## [125,] -1.436694e+00
## [126,]  5.454288e-01
## [127,]  1.085460e-01
## [128,] -1.449209e+00
## [129,] -1.300753e+00
## [130,] -1.010860e+00
## [131,] -1.733138e-01
## [132,] -8.829522e-01
## [133,] -1.041442e+00
## [134,] -1.244381e+00
## [135,] -1.733138e-01
## [136,] -3.142437e-01
## [137,] -6.847343e-01
## [138,] -4.923227e-01
## [139,]  1.517845e+00
## [140,] -4.551736e-01
## [141,]  3.199409e-01
## [142,]  1.799705e+00
## [143,]  5.313358e-01
## [144,] -4.199411e-01
## [145,] -1.733138e-01
## [146,] -4.165024e-01
## [147,] -6.997011e-01
## [148,] -3.142437e-01
## [149,]  5.736147e-01
## [150,]  6.722657e-01
## [151,]  7.850096e-01
## [152,]  5.313358e-01
## [153,] -5.147306e-01
## [154,] -1.393767e+00
## [155,]  4.467778e-01
## [156,]  2.103115e-01
## [157,]  9.528454e-02
## [158,]  4.378722e+00
## [159,]  1.085460e-01
## [160,]  1.790110e-01
## [161,]  1.658775e+00
## [162,] -3.847086e-01
## [163,] -1.182809e+00
## [164,] -6.830431e-01
## [165,]  2.498424e-01
## [166,]  7.427306e-01
## [167,] -4.551736e-01
## [168,]  1.940635e+00
## [169,] -8.074983e-01
## [170,]  5.313358e-01
## [171,]  8.131956e-01
## [172,] -4.195465e-01
## [173,] -7.370334e-01
## [174,]  1.729240e+00
## [175,] -7.263650e-01
## [176,]  8.695675e-01
## [177,] -1.542321e+00
## [178,] -1.018358e+00
## [179,] -4.410806e-01
## [180,] -1.502579e+00
## [181,] -1.263956e+00
## [182,] -3.038994e-01
## [183,] -1.216125e+00
## [184,] -7.103131e-01
## [185,] -1.413497e+00
## [186,] -1.526241e+00
## [187,] -8.779633e-01
## [188,] -5.997536e-01
## [189,] -4.998061e-01
## [190,] -5.397315e-01
## [191,]  5.595218e-01
## [192,] -1.274766e+00
## [193,] -1.328939e+00
## [194,]  8.695675e-01
## [195,] -2.280932e-01
## [196,]  4.890568e-01
## [197,] -1.451943e+00
## [198,] -1.239561e+00
## [199,] -8.202666e-01
## [200,] -3.142437e-01
## [201,] -7.163590e-01
## [202,]  1.165520e+00
## [203,] -1.049545e+00
## [204,] -8.779633e-01
## [205,]  6.722657e-01
## [206,] -1.400799e+00
## [207,]  1.235985e+00
## [208,]  7.427306e-01
## [209,] -1.300753e+00
## [210,]  1.085460e-01
## [211,] -1.232783e+00
## [212,] -7.830047e-01
## [213,] -6.521654e-01
## [214,] -1.499718e+00
## [215,] -1.232783e+00
## [216,]  1.024590e+00
## [217,] -1.179426e+00
## [218,] -3.038994e-01
## [219,] -3.332128e-01
## [220,]  3.904059e-01
## [221,] -9.259218e-01
## [222,]  6.505508e-02
## [223,] -1.106157e+00
## [224,] -7.897976e-01
## [225,]  1.588310e+00
## [226,]  4.280071e+00
## [227,] -3.461220e-01
## [228,] -3.332128e-01
## [229,]  3.199409e-01
## [230,] -5.709334e-01
## [231,] -1.353912e+00
## [232,]  2.025193e+00
## [233,]  1.235985e+00
## [234,]  1.235985e+00
## [235,]  9.541255e-01
## [236,] -3.238386e-02
## [237,] -6.833391e-01
## [238,] -9.229340e-01
## [239,] -1.526241e+00
## [240,] -1.277683e+00
## [241,] -1.212965e-01
## [242,] -4.551736e-01
## [243,] -3.238386e-02
## [244,]  7.427306e-01
## [245,] -1.328192e+00
## [246,] -5.649298e-01
## [247,] -1.066203e+00
## [248,] -1.412045e+00
## [249,] -2.257115e-01
## [250,]  8.131956e-01
## [251,]  3.808110e-02
## [252,] -3.142437e-01
## [253,]  6.873182e+00
## [254,] -1.182386e+00
## [255,] -2.719647e-01
## [256,] -1.774994e-01
## [257,]  1.235985e+00
## [258,]  8.662134e-01
## [259,]  1.024590e+00
## [260,]  4.164215e-01
## [261,]  2.494760e-01
## [262,] -6.830431e-01
## [263,] -1.344385e+00
## [264,] -6.487408e-01
## [265,] -1.222791e+00
## [266,]  6.722657e-01
## [267,] -2.698508e-01
## [268,] -7.368800e-03
## [269,] -1.187784e+00
## [270,] -6.663852e-01
## [271,] -5.608710e-01
## [272,] -1.316157e+00
## [273,] -4.998061e-01
## [274,] -3.847086e-01
## [275,] -4.878129e-01
## [276,] -1.733138e-01
## [277,] -7.652194e-01
## [278,] -8.074983e-01
## [279,] -1.298343e+00
## [280,] -7.496889e-01
## [281,] -4.197877e-03
## [282,] -1.733138e-01
## [283,] -5.997536e-01
## [284,] -1.028488e-01
## [285,] -5.961176e-01
## [286,] -2.484999e-01
## [287,] -1.333038e-01
## [288,] -4.647685e-02
## [289,] -8.629684e-01
## [290,]  3.199409e-01
## [291,]  6.018007e-01
## [292,]  1.170018e-01
## [293,]  2.494760e-01
## [294,] -3.142437e-01
## [295,]  8.131956e-01
## [296,]  5.313358e-01
## [297,] -1.437185e-01
## [298,] -3.861179e-01
## [299,]  3.427716e-01
## [300,] -1.823333e-01
## [301,]  7.738645e-02
## [302,] -1.070485e-01
## [303,]  4.749638e-01
## [304,]  1.508250e-01
## [305,] -8.448307e-01
## [306,] -1.874068e-01
## [307,]  5.217409e-02
## [308,] -8.509164e-02
## [309,]  2.001505e-01
## [310,]  1.827891e+00
## [311,]  1.235985e+00
## [312,] -6.603957e-01
## [313,] -1.029280e+00
## [314,] -4.759466e-01
## [315,] -8.448307e-01
## [316,]  7.458311e-01
## [317,] -9.370552e-01
## [318,]  1.108009e-01
## [319,] -3.097339e-01
## [320,]  9.814659e-01
## [321,]  2.821717e-01
## [322,]  1.519395e+00
## [323,]  6.733931e-01
## [324,]  9.541255e-01
## [325,]  1.085460e-01
## [326,]  1.675957e-01
## [327,]  2.494760e-01
## [328,] -3.238386e-02
## [329,]  8.131956e-01
## [330,]  4.512759e-02
## [331,]  8.485815e-03
## [332,] -3.097339e-01
## [333,]  8.485815e-03
## [334,] -3.097339e-01
## [335,]  7.483678e-01
## [336,]  2.821717e-01
## [337,]  7.709166e-01
## [338,]  1.854668e+00
## [339,]  3.424897e-01
## [340,] -4.253081e-02
## [341,]  2.336213e-01
## [342,] -2.620996e-01
## [343,]  1.574217e+00
## [344,]  7.832480e-01
## [345,]  8.836605e-01
## [346,]  6.243495e-01
## [347,] -4.929545e-02
## [348,] -2.360276e-01
## [349,]  9.895114e-03
## [350,]  3.199409e-01
## [351,]  6.911785e-01
## [352,]  3.501140e-01
## [353,]  7.709166e-01
## [354,]  1.508250e-01
## [355,] -4.759466e-01
## [356,] -6.603957e-01
## [357,]  5.313358e-01
## [358,]  1.398055e+00
## [359,]  1.128879e+00
## [360,] -3.043786e-01
## [361,]  2.494760e-01
## [362,] -7.187125e-01
## [363,]  2.494760e-01
## [364,] -7.187125e-01
## [365,]  6.722657e-01
## [366,]  3.706757e-01
## [367,]  3.340339e-01
## [368,] -7.652194e-01
## [369,]  3.199409e-01
## [370,]  8.131956e-01
## [371,]  1.508250e-01
## [372,]  1.090123e+00
## [373,]  7.426743e-01
## [374,] -8.081043e-01
## [375,] -8.081043e-01
## [376,]  8.299546e-02
## [377,]  2.776619e-01
## [378,]  7.483678e-01
## [379,]  1.359651e+00
## [380,]  5.003312e-01
## [381,]  3.480423e-01
## [382,] -1.511878e-01
## [383,]  2.336213e-01
## [384,] -2.620996e-01
## [385,] -4.687169e-01
## [386,]  2.821717e-01
## [387,] -1.056944e+00
## [388,]  7.286376e-01
## [389,]  6.018007e-01
## [390,]  1.696110e-01
## [391,] -1.992731e-01
## [392,]  1.085460e-01
## [393,]  8.485815e-03
## [394,] -3.097339e-01
## [395,]  4.608708e-01
## [396,] -9.721162e-02
## [397,] -3.433880e-01
## [398,]  7.738645e-02
## [399,]  1.451608e+00
## [400,]  6.468983e-01
## [401,]  1.364232e+00
## [402,]  5.961635e-01
## [403,]  5.124395e-02
## [404,] -4.316947e-01
## [405,]  8.836605e-01
## [406,] -1.992731e-01
## [407,] -7.652194e-01
## [408,]  1.004860e+00
## [409,] -8.448307e-01
## [410,]  9.541255e-01
## [411,] -5.681712e-01
## [412,] -9.370552e-01
## [413,] -6.531942e-01
## [414,] -8.855594e-01
## [415,] -4.759466e-01
## [416,] -7.526202e-01
## [417,]  2.081565e+00
## [418,] -7.370334e-01
## [419,] -6.820707e-01
## [420,]  6.722657e-01
## [421,]  3.002016e-05
## [422,]  1.813798e+00
## [423,]  6.581727e-01
## [424,]  9.541255e-01
## [425,] -4.551736e-01
## [426,] -4.143039e-01
## [427,] -1.620394e-01
## [428,] -8.855594e-01
## [429,]  3.960431e-01
## [430,] -1.029280e+00
## [431,] -9.630004e-01
## [432,] -1.117911e+00
## [433,] -3.433880e-01
## [434,] -4.982981e-01
## [435,] -1.070485e-01
## [436,] -2.914976e-01
## [437,] -6.531942e-01
## [438,] -3.433880e-01
## [439,]  1.090123e+00
## [440,]  7.426743e-01
## [441,] -9.630004e-01
## [442,] -1.117911e+00
## [443,] -1.992731e-01
## [444,] -4.759466e-01
## [445,]  1.451608e+00
## [446,] -4.982981e-01
## [447,]  1.364232e+00
## [448,]  5.961635e-01
## [449,]  9.541255e-01
## [450,] -1.272807e+00
## [451,] -4.551736e-01
## [452,] -4.722120e-01
## [453,]  1.193410e+00
## [454,]  1.085460e-01
## [455,]  1.790110e-01
## [456,] -1.057846e+00
## [457,] -1.028488e-01
## [458,] -3.433880e-01
## [459,] -1.322710e+00
## [460,] -1.137063e+00
## [461,] -7.616257e-01
## [462,] -1.733138e-01
## [463,] -8.081043e-01
## [464,] -1.322710e+00
## [465,]  7.099503e-01
## [466,]  1.085460e-01
## [467,]  4.467778e-01
## [468,] -1.043990e-01
## [469,] -1.733138e-01
## [470,]  3.904059e-01
## [471,]  3.199409e-01
## [472,] -8.779633e-01
## [473,]  1.517845e+00
## [474,]  3.904059e-01
## [475,]  9.996177e-01
## [476,] -2.914976e-01
## [477,]  1.026000e+00
## [478,]  1.517845e+00
## [479,]  1.235985e+00
## [480,]  1.085460e-01
## [481,]  1.085460e-01
## [482,] -6.665684e-01
## [483,]  2.983516e+00
## [484,]  1.461473e+00
## [485,]  1.376915e+00
## [486,]  1.085460e-01
## [487,]  1.658775e+00
## [488,] -1.733138e-01
## [489,] -1.733138e-01
## [490,] -1.133399e+00
## [491,]  1.235985e+00
## [492,] -5.256385e-01
## [493,] -1.081043e+00
## [494,] -4.722120e-01
## [495,] -1.733138e-01
## [496,]  5.736147e-01
## [497,] -7.647261e-01
## [498,]  7.427306e-01
## [499,] -2.659470e-01
## [500,] -8.441965e-01
## [501,] -6.996729e-01
## [502,] -1.117911e+00
## [503,] -1.018893e+00
## [504,] -3.505331e-01
## [505,]  3.808110e-02
## [506,] -3.607083e-01
## [507,] -5.256385e-01
## [508,] -6.686965e-01
## [509,]  1.085460e-01
## [510,]  6.299867e-01
## [511,]  5.313358e-01
## [512,] -5.832507e-01
## [513,] -6.665684e-01
## [514,] -5.757532e-01
## [515,] -1.300753e+00
## [516,] -9.061493e-01
## [517,]  5.665682e-01
## [518,] -6.222178e-01
## [519,]  1.416082e-01
## [520,]  3.772724e+00
## [521,] -6.054612e-01
## [522,] -1.441683e+00
## [523,] -1.300753e+00
## [524,]  4.125048e+00
## [525,]  3.199409e-01
## [526,]  9.118465e-01
## [527,] -4.833596e-01
## [528,]  3.199409e-01
## [529,] -1.733138e-01
## [530,] -3.097339e-01
## [531,] -3.847086e-01
## [532,] -5.256385e-01
## [533,]  1.433287e+00
## [534,]  1.131697e+00
## [535,]  2.171760e+00
## [536,]  1.420885e+00
## [537,]  8.485815e-03
## [538,]  6.018007e-01
## [539,]  4.087268e-01
## [540,] -1.437185e-01
## [541,]  5.124395e-02
## [542,] -4.316947e-01
## [543,]  1.330394e+00
## [544,] -1.859975e-01
## [545,]  2.494760e-01
## [546,]  3.808110e-02
## [547,] -2.533736e-02
## [548,]  2.494760e-01
## [549,] -1.867021e-01
## [550,]  6.722657e-01
## [551,]  1.310678e+00
## [552,]  3.960431e-01
## [553,]  8.977535e-01
## [554,]  4.467778e-01
## [555,]  1.237395e+00
## [556,]  6.722657e-01
## [557,]  4.608708e-01
## [558,] -5.890570e-01
## [559,]  1.310678e+00
## [560,]  3.960431e-01
## [561,]  1.310678e+00
## [562,]  1.020363e+00
## [563,]  8.850698e-01
## [564,]  3.939291e-01
## [565,]  5.428803e-02
## [566,] -8.215913e-01
## [567,]  8.131956e-01
## [568,] -6.603957e-01
## [569,] -4.551736e-01
## [570,]  3.904059e-01
## [571,]  1.376915e+00
## [572,]  3.904059e-01
## [573,] -1.733138e-01
## [574,] -6.101965e-01
## [575,]  1.376915e+00
## [576,]  3.904059e-01
## [577,]  1.376915e+00
## [578,]  5.323927e-01
## [579,] -1.733138e-01
## [580,] -1.230288e+00
## [581,]  2.001505e-01
## [582,] -8.509164e-02
## [583,]  1.519395e+00
## [584,]  6.733931e-01
## [585,] -1.028488e-01
## [586,] -1.934784e-02
## [587,] -9.370552e-01
## [588,]  3.904059e-01
## [589,] -1.874068e-01
## [590,] -7.370334e-01
## [591,]  1.131190e+00
## [592,]  4.588132e-01
## [593,]  1.658775e+00
## [594,]  5.313358e-01
## [595,]  5.349999e-01
## [596,] -4.253081e-02
## [597,]  1.376915e+00
## [598,]  8.131956e-01
## [599,]  6.722657e-01
## [600,]  2.494760e-01
## [601,] -6.383825e-01
## [602,] -8.497773e-01
## [603,]  5.877077e-01
## [604,]  1.931040e-01
## [605,]  2.353830e-01
## [606,]  5.313358e-01
## [607,]  1.235985e+00
## attr(,"scaled:center")
## [1] 112297.9
## attr(,"scaled:scale")
## [1] 70957.26
  1. Save your standard scores (z scores) from #2 to the dataset. (Hint use data$column<- code to make standard scores)
#your code goes here
salaries$salary_in_usd <- scale(salaries$salary_in_usd)
  1. make a graph of the zscores you’ve created
#your code goes here
ggplot(salaries, aes(salary_in_usd))+geom_boxplot()

  1. What do you notice about the two graphs?

write your answer here the x values on the graph make significantly more sense as standard scores ## calculating standard scores

  1. Aria wants to compare scores that students recieve on case study assignments. They know that the average case study score is 88.7 and has a standard deviation of 3.8. What is the standard score for a student who received a 93?
#(93-88.7)/3.8 = 1.131579
  1. Interpret the z score (standard score) that you’ve calculated.

your answer goes here the standard score the student received was 1.131579 std. deviations above the average.

  1. On a standard normal distribution, what is the probability of obtaining a z score less than or equal to 2?

97.65%

  1. On a standard normal distribution, what is the z score associated with the lower .05 of the distribution? What about the upper .05 of the distribution?
    lower= upper=