library(tidyverse)
data_to_viz <- read_csv("data/data-to-explore.csv")
plot <- ggplot(data_to_viz) +
geom_boxplot(mapping = aes(x = subject, y = time_spent_hours, color = subject)) +
labs(title = "Hours Spent Studying by Subject",
caption = "How many hours did students spend studying on a specific subject?")
plot <- plot + coord_cartesian(ylim = c(0, 60))
plot <- plot + theme_classic()
plot + scale_color_brewer(palette = "Set1")

In the box plot above, each subject is showing the summary of the
population of students and the time (hours) that they spent studying.
Students spent more time studying for AnPhA and less time studying for
BioA, compared to other subjects. Most students spent somewhere between
~15 - 40 hours of studying overall across the subjects. However, there
are some outliers that were clipped from the graph that may affect the
data shown.
LS0tCnRpdGxlOiAiSG91cnMgU3BlbnQgU3R1ZHlpbmcgYnkgU3ViamVjdCIKYXV0aG9yOiAiTmdvYyBOZ3V5ZW4iCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwnJUIgJWUsICVZJylgIgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKCmRhdGFfdG9fdml6IDwtIHJlYWRfY3N2KCJkYXRhL2RhdGEtdG8tZXhwbG9yZS5jc3YiKQoKcGxvdCA8LSBnZ3Bsb3QoZGF0YV90b192aXopICsKICBnZW9tX2JveHBsb3QobWFwcGluZyA9IGFlcyh4ID0gc3ViamVjdCwgeSA9IHRpbWVfc3BlbnRfaG91cnMsIGNvbG9yID0gc3ViamVjdCkpICsKICBsYWJzKHRpdGxlID0gIkhvdXJzIFNwZW50IFN0dWR5aW5nIGJ5IFN1YmplY3QiLAogICAgICAgY2FwdGlvbiA9ICJIb3cgbWFueSBob3VycyBkaWQgc3R1ZGVudHMgc3BlbmQgc3R1ZHlpbmcgb24gYSBzcGVjaWZpYyBzdWJqZWN0PyIpCgpwbG90IDwtIHBsb3QgKyBjb29yZF9jYXJ0ZXNpYW4oeWxpbSA9IGMoMCwgNjApKQoKcGxvdCA8LSBwbG90ICsgdGhlbWVfY2xhc3NpYygpCgpwbG90ICsgc2NhbGVfY29sb3JfYnJld2VyKHBhbGV0dGUgPSAiU2V0MSIpCmBgYAoKSW4gdGhlIGJveCBwbG90IGFib3ZlLCBlYWNoIHN1YmplY3QgaXMgc2hvd2luZyB0aGUgc3VtbWFyeSBvZiB0aGUgcG9wdWxhdGlvbiBvZiBzdHVkZW50cyBhbmQgdGhlIHRpbWUgKGhvdXJzKSB0aGF0IHRoZXkgc3BlbnQgc3R1ZHlpbmcuIFN0dWRlbnRzIHNwZW50IG1vcmUgdGltZSBzdHVkeWluZyBmb3IgQW5QaEEgYW5kIGxlc3MgdGltZSBzdHVkeWluZyBmb3IgQmlvQSwgY29tcGFyZWQgdG8gb3RoZXIgc3ViamVjdHMuIE1vc3Qgc3R1ZGVudHMgc3BlbnQgc29tZXdoZXJlIGJldHdlZW4gfjE1IC0gNDAgaG91cnMgb2Ygc3R1ZHlpbmcgb3ZlcmFsbCBhY3Jvc3MgdGhlIHN1YmplY3RzLiBIb3dldmVyLCB0aGVyZSBhcmUgc29tZSBvdXRsaWVycyB0aGF0IHdlcmUgY2xpcHBlZCBmcm9tIHRoZSBncmFwaCB0aGF0IG1heSBhZmZlY3QgdGhlIGRhdGEgc2hvd24uCg==