# Import libraries
library(plyr)
library(tidyverse) # cleaning & wrangling functions
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::arrange() masks plyr::arrange()
## x purrr::compact() masks plyr::compact()
## x dplyr::count() masks plyr::count()
## x dplyr::failwith() masks plyr::failwith()
## x dplyr::filter() masks stats::filter()
## x dplyr::id() masks plyr::id()
## x dplyr::lag() masks stats::lag()
## x dplyr::mutate() masks plyr::mutate()
## x dplyr::rename() masks plyr::rename()
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
library(janitor) # data cleaning
## Warning: package 'janitor' was built under R version 4.1.3
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(magrittr) # piping
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
library(flextable) #table layout and formatting
## Warning: package 'flextable' was built under R version 4.1.3
##
## Attaching package: 'flextable'
## The following object is masked from 'package:purrr':
##
## compose
library(dlookr) # exploratory data analysis functions
## Warning: package 'dlookr' was built under R version 4.1.3
##
## Attaching package: 'dlookr'
## The following object is masked from 'package:magrittr':
##
## extract
## The following object is masked from 'package:tidyr':
##
## extract
## The following object is masked from 'package:base':
##
## transform
library(patchwork) # easy plot layout
## Warning: package 'patchwork' was built under R version 4.1.3
library(ggpubr) # creates a wrapper for plotting a list
##
## Attaching package: 'ggpubr'
## The following objects are masked from 'package:flextable':
##
## border, font, rotate
## The following object is masked from 'package:plyr':
##
## mutate
library(viridis) #coloration for box plots
## Loading required package: viridisLite
library(broom) # creates a tidy data frame from statistical test results
library(InformationValue) # optimize threshold
## Warning: package 'InformationValue' was built under R version 4.1.3
library(caret) # modeling
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following objects are masked from 'package:InformationValue':
##
## confusionMatrix, precision, sensitivity, specificity
## The following object is masked from 'package:purrr':
##
## lift
library(ROCR) #roc curve
library(car) # marginal plots\
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
library(MASS) # use for gamma shape function
##
## Attaching package: 'MASS'
## The following object is masked from 'package:patchwork':
##
## area
## The following object is masked from 'package:dplyr':
##
## select
library(tinytex)
## Warning: package 'tinytex' was built under R version 4.1.3
library(tidyverse)
library(caret)
library(caTools)
library(ggplot2)
library(Amelia)
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.8.0, built: 2021-05-26)
## ## Copyright (C) 2005-2022 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.1.3
##
## Attaching package: 'kableExtra'
## The following objects are masked from 'package:flextable':
##
## as_image, footnote
## The following object is masked from 'package:dplyr':
##
## group_rows
library(tidyverse)
library(ggplot2)
library(dplyr)
library(MASS)
library(corrplot)
## corrplot 0.92 loaded
library(RColorBrewer)
library(GGally)
## Warning: package 'GGally' was built under R version 4.1.3
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(ggResidpanel)
## Warning: package 'ggResidpanel' was built under R version 4.1.3
library(psych)
##
## Attaching package: 'psych'
## The following object is masked from 'package:car':
##
## logit
## The following object is masked from 'package:dlookr':
##
## describe
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(mice)
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
library(cowplot)
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggpubr':
##
## get_legend
## The following object is masked from 'package:patchwork':
##
## align_plots
library(car)
library(caTools)
library(VIM)
## Warning: package 'VIM' was built under R version 4.1.3
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
## sleep
library(broom)
# Libraries and Options
knitr::opts_chunk$set(echo = F, warning = F, message = F, eval = T,
fig.height = 5, fig.width = 10)
library(knitr)
## Warning: package 'knitr' was built under R version 4.1.3
library(skimr)
## Warning: package 'skimr' was built under R version 4.1.3
library(visdat)
## Warning: package 'visdat' was built under R version 4.1.3
library(inspectdf)
## Warning: package 'inspectdf' was built under R version 4.1.3
library(corrplot)
library(scales)
##
## Attaching package: 'scales'
## The following objects are masked from 'package:psych':
##
## alpha, rescale
## The following object is masked from 'package:viridis':
##
## viridis_pal
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
library(tidyverse)
library(tidyr)
library(bestglm)
## Warning: package 'bestglm' was built under R version 4.1.3
## Loading required package: leaps
## Warning: package 'leaps' was built under R version 4.1.3
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following object is masked from 'package:colorspace':
##
## coords
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
library(car)
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.1.3
library(mice)
library(caret)
library(dplyr)
library(MASS)
library(zoo)
## Warning: package 'zoo' was built under R version 4.1.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
options(scipen = 9)
set.seed(123)
boxplot_depend_vs_independ <- function(df_train, target_name) {
train_int_names <- df_train %>% select_if(is.numeric)
int_names <- names(train_int_names)
myGlist <- vector('list', length(int_names))
names(myGlist) <- int_names
for (i in int_names) {
myGlist[[i]] <-
ggplot(df_train, aes_string(x = target_name, y = i)) +
geom_boxplot(color = 'steelblue', outlier.color = 'firebrick',
outlier.alpha = 0.35) +
labs(title = paste0(i,' vs target'), y = i, x= 'target') +
theme_minimal() +
theme(
plot.title = element_text(hjust = 0.45),
panel.grid.major.y = element_line(color = "grey",
linetype = "dashed"),
panel.grid.major.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
axis.ticks.x = element_line(color = "grey")
)
}
myGlist <- within(myGlist, rm(target_name))
gridExtra::grid.arrange(grobs = myGlist, ncol = 3)
}
plot_corr_matrix <- function(dataframe, significance_threshold){
title <- paste0('Correlation Matrix for significance > ',
significance_threshold)
df_cor <- dataframe %>% mutate_if(is.character, as.factor)
df_cor <- df_cor %>% mutate_if(is.factor, as.numeric)
#run a correlation and drop the insignificant ones
corr <- cor(df_cor)
#prepare to drop duplicates and correlations of 1
corr[lower.tri(corr,diag=TRUE)] <- NA
#drop perfect correlations
corr[corr == 1] <- NA
#turn into a 3-column table
corr <- as.data.frame(as.table(corr))
#remove the NA values from above
corr <- na.omit(corr)
#select significant values
corr <- subset(corr, abs(Freq) > significance_threshold)
#sort by highest correlation
corr <- corr[order(-abs(corr$Freq)),]
#print table
# print(corr)
#turn corr back into matrix in order to plot with corrplot
mtx_corr <- reshape2::acast(corr, Var1~Var2, value.var="Freq")
#plot correlations visually
corrplot(mtx_corr,
title=title,
mar=c(0,0,1,0),
method='color',
tl.col="black",
na.label= " ",
addCoef.col = 'black',
number.cex = .9)
}
missing.types <- c("NA", "")
getwd()
## [1] "C:/Users/polhe/Documents/R"
train <- read.csv("C:/Users/polhe/Downloads/insurance_training_data.csv")
test <- read.csv("C:/Users/polhe/Downloads/insurance-evaluation-data.csv")

## INDEX TARGET_FLAG TARGET_AMT KIDSDRIV
## Min. : 1 Min. :0.0000 Min. : 0 Min. :0.0000
## 1st Qu.: 2559 1st Qu.:0.0000 1st Qu.: 0 1st Qu.:0.0000
## Median : 5133 Median :0.0000 Median : 0 Median :0.0000
## Mean : 5152 Mean :0.2638 Mean : 1504 Mean :0.1711
## 3rd Qu.: 7745 3rd Qu.:1.0000 3rd Qu.: 1036 3rd Qu.:0.0000
## Max. :10302 Max. :1.0000 Max. :107586 Max. :4.0000
##
## AGE HOMEKIDS YOJ INCOME
## Min. :16.00 Min. :0.0000 Min. : 0.0 Length:8161
## 1st Qu.:39.00 1st Qu.:0.0000 1st Qu.: 9.0 Class :character
## Median :45.00 Median :0.0000 Median :11.0 Mode :character
## Mean :44.79 Mean :0.7212 Mean :10.5
## 3rd Qu.:51.00 3rd Qu.:1.0000 3rd Qu.:13.0
## Max. :81.00 Max. :5.0000 Max. :23.0
## NA's :6 NA's :454
## PARENT1 HOME_VAL MSTATUS SEX
## Length:8161 Length:8161 Length:8161 Length:8161
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## EDUCATION JOB TRAVTIME CAR_USE
## Length:8161 Length:8161 Min. : 5.00 Length:8161
## Class :character Class :character 1st Qu.: 22.00 Class :character
## Mode :character Mode :character Median : 33.00 Mode :character
## Mean : 33.49
## 3rd Qu.: 44.00
## Max. :142.00
##
## BLUEBOOK TIF CAR_TYPE RED_CAR
## Length:8161 Min. : 1.000 Length:8161 Length:8161
## Class :character 1st Qu.: 1.000 Class :character Class :character
## Mode :character Median : 4.000 Mode :character Mode :character
## Mean : 5.351
## 3rd Qu.: 7.000
## Max. :25.000
##
## OLDCLAIM CLM_FREQ REVOKED MVR_PTS
## Length:8161 Min. :0.0000 Length:8161 Min. : 0.000
## Class :character 1st Qu.:0.0000 Class :character 1st Qu.: 0.000
## Mode :character Median :0.0000 Mode :character Median : 1.000
## Mean :0.7986 Mean : 1.696
## 3rd Qu.:2.0000 3rd Qu.: 3.000
## Max. :5.0000 Max. :13.000
##
## CAR_AGE URBANICITY
## Min. :-3.000 Length:8161
## 1st Qu.: 1.000 Class :character
## Median : 8.000 Mode :character
## Mean : 8.328
## 3rd Qu.:12.000
## Max. :28.000
## NA's :510
## 'data.frame': 8161 obs. of 26 variables:
## $ INDEX : int 1 2 4 5 6 7 8 11 12 13 ...
## $ TARGET_FLAG: int 0 0 0 0 0 1 0 1 1 0 ...
## $ TARGET_AMT : num 0 0 0 0 0 ...
## $ KIDSDRIV : int 0 0 0 0 0 0 0 1 0 0 ...
## $ AGE : int 60 43 35 51 50 34 54 37 34 50 ...
## $ HOMEKIDS : int 0 0 1 0 0 1 0 2 0 0 ...
## $ YOJ : int 11 11 10 14 NA 12 NA NA 10 7 ...
## $ INCOME : chr "$67,349" "$91,449" "$16,039" "" ...
## $ PARENT1 : chr "No" "No" "No" "No" ...
## $ HOME_VAL : chr "$0" "$257,252" "$124,191" "$306,251" ...
## $ MSTATUS : chr "z_No" "z_No" "Yes" "Yes" ...
## $ SEX : chr "M" "M" "z_F" "M" ...
## $ EDUCATION : chr "PhD" "z_High School" "z_High School" "<High School" ...
## $ JOB : chr "Professional" "z_Blue Collar" "Clerical" "z_Blue Collar" ...
## $ TRAVTIME : int 14 22 5 32 36 46 33 44 34 48 ...
## $ CAR_USE : chr "Private" "Commercial" "Private" "Private" ...
## $ BLUEBOOK : chr "$14,230" "$14,940" "$4,010" "$15,440" ...
## $ TIF : int 11 1 4 7 1 1 1 1 1 7 ...
## $ CAR_TYPE : chr "Minivan" "Minivan" "z_SUV" "Minivan" ...
## $ RED_CAR : chr "yes" "yes" "no" "yes" ...
## $ OLDCLAIM : chr "$4,461" "$0" "$38,690" "$0" ...
## $ CLM_FREQ : int 2 0 2 0 2 0 0 1 0 0 ...
## $ REVOKED : chr "No" "No" "No" "No" ...
## $ MVR_PTS : int 3 0 3 0 3 0 0 10 0 1 ...
## $ CAR_AGE : int 18 1 10 6 17 7 1 7 1 17 ...
## $ URBANICITY : chr "Highly Urban/ Urban" "Highly Urban/ Urban" "Highly Urban/ Urban" "Highly Urban/ Urban" ...


## Rows: 8,161
## Columns: 26
## $ INDEX <int> 1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 2~
## $ TARGET_FLAG <int> 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1~
## $ TARGET_AMT <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 2946.000, 0.000, 4021.0~
## $ KIDSDRIV <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ AGE <int> 60, 43, 35, 51, 50, 34, 54, 37, 34, 50, 53, 43, 55, 53, 45~
## $ HOMEKIDS <int> 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 2, 1~
## $ YOJ <int> 11, 11, 10, 14, NA, 12, NA, NA, 10, 7, 14, 5, 11, 11, 0, 1~
## $ INCOME <chr> "$67,349", "$91,449", "$16,039", "", "$114,986", "$125,301~
## $ PARENT1 <chr> "No", "No", "No", "No", "No", "Yes", "No", "No", "No", "No~
## $ HOME_VAL <chr> "$0", "$257,252", "$124,191", "$306,251", "$243,925", "$0"~
## $ MSTATUS <chr> "z_No", "z_No", "Yes", "Yes", "Yes", "z_No", "Yes", "Yes",~
## $ SEX <chr> "M", "M", "z_F", "M", "z_F", "z_F", "z_F", "M", "z_F", "M"~
## $ EDUCATION <chr> "PhD", "z_High School", "z_High School", "<High School", "~
## $ JOB <chr> "Professional", "z_Blue Collar", "Clerical", "z_Blue Colla~
## $ TRAVTIME <int> 14, 22, 5, 32, 36, 46, 33, 44, 34, 48, 15, 36, 25, 64, 48,~
## $ CAR_USE <chr> "Private", "Commercial", "Private", "Private", "Private", ~
## $ BLUEBOOK <chr> "$14,230", "$14,940", "$4,010", "$15,440", "$18,000", "$17~
## $ TIF <int> 11, 1, 4, 7, 1, 1, 1, 1, 1, 7, 1, 7, 7, 6, 1, 6, 6, 7, 4, ~
## $ CAR_TYPE <chr> "Minivan", "Minivan", "z_SUV", "Minivan", "z_SUV", "Sports~
## $ RED_CAR <chr> "yes", "yes", "no", "yes", "no", "no", "no", "yes", "no", ~
## $ OLDCLAIM <chr> "$4,461", "$0", "$38,690", "$0", "$19,217", "$0", "$0", "$~
## $ CLM_FREQ <int> 2, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2~
## $ REVOKED <chr> "No", "No", "No", "No", "Yes", "No", "No", "Yes", "No", "N~
## $ MVR_PTS <int> 3, 0, 3, 0, 3, 0, 0, 10, 0, 1, 0, 0, 3, 3, 3, 0, 0, 0, 0, ~
## $ CAR_AGE <int> 18, 1, 10, 6, 17, 7, 1, 7, 1, 17, 11, 1, 9, 10, 5, 13, 16,~
## $ URBANICITY <chr> "Highly Urban/ Urban", "Highly Urban/ Urban", "Highly Urba~
## [1] 12
## [1] 14
## INDEX TARGET_FLAG TARGET_AMT KIDSDRIV
## Min. : 1 Min. :0.0000 Min. : 0 Min. :0.0000
## 1st Qu.: 2559 1st Qu.:0.0000 1st Qu.: 0 1st Qu.:0.0000
## Median : 5133 Median :0.0000 Median : 0 Median :0.0000
## Mean : 5152 Mean :0.2638 Mean : 1504 Mean :0.1711
## 3rd Qu.: 7745 3rd Qu.:1.0000 3rd Qu.: 1036 3rd Qu.:0.0000
## Max. :10302 Max. :1.0000 Max. :107586 Max. :4.0000
##
## AGE HOMEKIDS YOJ INCOME
## Min. :16.00 Min. :0.0000 Min. : 0.0 Length:8161
## 1st Qu.:39.00 1st Qu.:0.0000 1st Qu.: 9.0 Class :character
## Median :45.00 Median :0.0000 Median :11.0 Mode :character
## Mean :44.79 Mean :0.7212 Mean :10.5
## 3rd Qu.:51.00 3rd Qu.:1.0000 3rd Qu.:13.0
## Max. :81.00 Max. :5.0000 Max. :23.0
## NA's :6 NA's :454
## PARENT1 HOME_VAL MSTATUS SEX
## Length:8161 Length:8161 Length:8161 Length:8161
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## EDUCATION JOB TRAVTIME CAR_USE
## Length:8161 Length:8161 Min. : 5.00 Length:8161
## Class :character Class :character 1st Qu.: 22.00 Class :character
## Mode :character Mode :character Median : 33.00 Mode :character
## Mean : 33.49
## 3rd Qu.: 44.00
## Max. :142.00
##
## BLUEBOOK TIF CAR_TYPE RED_CAR
## Length:8161 Min. : 1.000 Length:8161 Length:8161
## Class :character 1st Qu.: 1.000 Class :character Class :character
## Mode :character Median : 4.000 Mode :character Mode :character
## Mean : 5.351
## 3rd Qu.: 7.000
## Max. :25.000
##
## OLDCLAIM CLM_FREQ REVOKED MVR_PTS
## Length:8161 Min. :0.0000 Length:8161 Min. : 0.000
## Class :character 1st Qu.:0.0000 Class :character 1st Qu.: 0.000
## Mode :character Median :0.0000 Mode :character Median : 1.000
## Mean :0.7986 Mean : 1.696
## 3rd Qu.:2.0000 3rd Qu.: 3.000
## Max. :5.0000 Max. :13.000
##
## CAR_AGE URBANICITY
## Min. :-3.000 Length:8161
## 1st Qu.: 1.000 Class :character
## Median : 8.000 Mode :character
## Mean : 8.328
## 3rd Qu.:12.000
## Max. :28.000
## NA's :510
## INDEX TARGET_FLAG TARGET_AMT KIDSDRIV AGE HOMEKIDS
## 0 0 0 0 6 0
## YOJ INCOME PARENT1 HOME_VAL MSTATUS SEX
## 454 0 0 0 0 0
## EDUCATION JOB TRAVTIME CAR_USE BLUEBOOK TIF
## 0 0 0 0 0 0
## CAR_TYPE RED_CAR OLDCLAIM CLM_FREQ REVOKED MVR_PTS
## 0 0 0 0 0 0
## CAR_AGE URBANICITY
## 510 0

##
## Variables sorted by number of missings:
## Variable Count
## CAR_AGE 0.062492342
## YOJ 0.055630437
## AGE 0.000735204
## INDEX 0.000000000
## TARGET_FLAG 0.000000000
## TARGET_AMT 0.000000000
## KIDSDRIV 0.000000000
## HOMEKIDS 0.000000000
## INCOME 0.000000000
## PARENT1 0.000000000
## HOME_VAL 0.000000000
## MSTATUS 0.000000000
## SEX 0.000000000
## EDUCATION 0.000000000
## JOB 0.000000000
## TRAVTIME 0.000000000
## CAR_USE 0.000000000
## BLUEBOOK 0.000000000
## TIF 0.000000000
## CAR_TYPE 0.000000000
## RED_CAR 0.000000000
## OLDCLAIM 0.000000000
## CLM_FREQ 0.000000000
## REVOKED 0.000000000
## MVR_PTS 0.000000000
## URBANICITY 0.000000000
## TARGET_FLAG TARGET_AMT KIDSDRIV AGE HOMEKIDS YOJ
## 2141 2141 0 0 0 0
## INCOME PARENT1 HOME_VAL MSTATUS SEX EDUCATION
## 0 0 0 0 0 0
## JOB TRAVTIME CAR_USE BLUEBOOK TIF CAR_TYPE
## 0 0 0 0 0 0
## RED_CAR OLDCLAIM CLM_FREQ REVOKED MVR_PTS CAR_AGE
## 0 0 0 0 0 0
## URBANICITY dataset
## 0 0

##
## Variables sorted by number of missings:
## Variable Count
## TARGET_FLAG 0.2078237
## TARGET_AMT 0.2078237
## KIDSDRIV 0.0000000
## AGE 0.0000000
## HOMEKIDS 0.0000000
## YOJ 0.0000000
## INCOME 0.0000000
## PARENT1 0.0000000
## HOME_VAL 0.0000000
## MSTATUS 0.0000000
## SEX 0.0000000
## EDUCATION 0.0000000
## JOB 0.0000000
## TRAVTIME 0.0000000
## CAR_USE 0.0000000
## BLUEBOOK 0.0000000
## TIF 0.0000000
## CAR_TYPE 0.0000000
## RED_CAR 0.0000000
## OLDCLAIM 0.0000000
## CLM_FREQ 0.0000000
## REVOKED 0.0000000
## MVR_PTS 0.0000000
## CAR_AGE 0.0000000
## URBANICITY 0.0000000
## dataset 0.0000000




##
## Call:
## glm(formula = TARGET_FLAG ~ ., family = binomial, data = partial_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6006 -0.7077 -0.3941 0.6052 3.1405
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.0693600803 0.4202229450 -7.304 2.79e-13 ***
## KIDSDRIV 0.3515571781 0.0658502027 5.339 9.36e-08 ***
## AGE -0.0050351848 0.0044734510 -1.126 0.260347
## HOMEKIDS 0.0426963442 0.0411955054 1.036 0.300001
## YOJ 0.0221778993 0.0131957855 1.681 0.092825 .
## INCOME -0.0000030661 0.0000012362 -2.480 0.013132 *
## PARENT1Yes 0.3978016192 0.1199154819 3.317 0.000909 ***
## HOME_VAL -0.0000004493 0.0000006003 -0.748 0.454199
## MSTATUSYes -0.4991286596 0.0945496365 -5.279 1.30e-07 ***
## SEXM 0.0037133477 0.1227904683 0.030 0.975875
## EDUCATIONBachelors -0.3854845322 0.1253371196 -3.076 0.002101 **
## EDUCATIONHigh School -0.0091475737 0.1037292319 -0.088 0.929728
## EDUCATIONMasters -0.3279560593 0.1958338109 -1.675 0.094000 .
## EDUCATIONPhD -0.2487331410 0.2344401680 -1.061 0.288705
## JOBBlue Collar 0.4315970000 0.2022684830 2.134 0.032861 *
## JOBClerical 0.6047165792 0.2138058567 2.828 0.004679 **
## JOBDoctor -0.4064873412 0.2882108928 -1.410 0.158427
## JOBHome Maker 0.2501075565 0.2326974095 1.075 0.282456
## JOBLawyer 0.1822093417 0.1864925422 0.977 0.328553
## JOBManager -0.5038699303 0.1875203483 -2.687 0.007209 **
## JOBProfessional 0.2702870392 0.1941936292 1.392 0.163970
## JOBStudent 0.1273971725 0.2409407879 0.529 0.596980
## TRAVTIME 0.0154721572 0.0020477806 7.556 4.17e-14 ***
## CAR_USEPrivate -0.7441576243 0.1001753888 -7.429 1.10e-13 ***
## BLUEBOOK -0.0000187317 0.0000057560 -3.254 0.001137 **
## TIF -0.0553408373 0.0080125135 -6.907 4.96e-12 ***
## CAR_TYPEPanel Truck 0.6086211407 0.1763897369 3.450 0.000560 ***
## CAR_TYPEPickup 0.5827238152 0.1096348431 5.315 1.07e-07 ***
## CAR_TYPESports Car 0.9917174655 0.1413403633 7.017 2.27e-12 ***
## CAR_TYPESUV 0.7917833473 0.1207154076 6.559 5.41e-11 ***
## CAR_TYPEVan 0.5669556496 0.1390734414 4.077 4.57e-05 ***
## RED_CARyes 0.0897210565 0.0948013768 0.946 0.343939
## OLDCLAIM -0.0000198112 0.0000045289 -4.374 1.22e-05 ***
## CLM_FREQ 0.0260684436 0.0482543598 0.540 0.589039
## REVOKEDYes 0.9719598057 0.1006090601 9.661 < 2e-16 ***
## MVR_PTS 0.1185528180 0.0207643129 5.709 1.13e-08 ***
## CAR_AGE 0.0060231801 0.0112013913 0.538 0.590772
## URBANICITYHighly Urban/ Urban 2.3394577233 0.1210807655 19.321 < 2e-16 ***
## CAR_AGE_BRAND_NEW_FLAG 0.0844545936 0.1141947062 0.740 0.459563
## CLM_FREQ_ZERO -0.5302489350 0.1324076563 -4.005 6.21e-05 ***
## HOME_VAL_ZERO 0.2448124839 0.1514241913 1.617 0.105936
## MVR_PTS_ZERO 0.0466216693 0.0930405735 0.501 0.616308
## YOJ_ZERO 0.7252968372 0.2095690851 3.461 0.000538 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 8007.9 on 6937 degrees of freedom
## Residual deviance: 6152.6 on 6895 degrees of freedom
## AIC: 6238.6
##
## Number of Fisher Scoring iterations: 5
## Start: AIC=6238.64
## TARGET_FLAG ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME + PARENT1 +
## HOME_VAL + MSTATUS + SEX + EDUCATION + JOB + TRAVTIME + CAR_USE +
## BLUEBOOK + TIF + CAR_TYPE + RED_CAR + OLDCLAIM + CLM_FREQ +
## REVOKED + MVR_PTS + CAR_AGE + URBANICITY + CAR_AGE_BRAND_NEW_FLAG +
## CLM_FREQ_ZERO + HOME_VAL_ZERO + MVR_PTS_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - SEX 1 6152.6 6236.6
## - MVR_PTS_ZERO 1 6152.9 6236.9
## - CAR_AGE 1 6152.9 6236.9
## - CLM_FREQ 1 6152.9 6236.9
## - CAR_AGE_BRAND_NEW_FLAG 1 6153.2 6237.2
## - HOME_VAL 1 6153.2 6237.2
## - RED_CAR 1 6153.5 6237.5
## - HOMEKIDS 1 6153.7 6237.7
## - AGE 1 6153.9 6237.9
## <none> 6152.6 6238.6
## - HOME_VAL_ZERO 1 6155.3 6239.3
## - YOJ 1 6155.5 6239.5
## - INCOME 1 6158.9 6242.9
## - EDUCATION 4 6168.9 6246.9
## - BLUEBOOK 1 6163.4 6247.4
## - PARENT1 1 6163.7 6247.7
## - YOJ_ZERO 1 6164.7 6248.7
## - CLM_FREQ_ZERO 1 6168.6 6252.6
## - OLDCLAIM 1 6172.3 6256.3
## - MSTATUS 1 6180.2 6264.2
## - KIDSDRIV 1 6181.1 6265.1
## - MVR_PTS 1 6185.8 6269.8
## - TIF 1 6202.1 6286.1
## - JOB 8 6220.2 6290.2
## - CAR_USE 1 6208.7 6292.7
## - TRAVTIME 1 6209.9 6293.9
## - CAR_TYPE 5 6229.4 6305.4
## - REVOKED 1 6244.6 6328.6
## - URBANICITY 1 6673.3 6757.3
##
## Step: AIC=6236.64
## TARGET_FLAG ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME + PARENT1 +
## HOME_VAL + MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE +
## BLUEBOOK + TIF + CAR_TYPE + RED_CAR + OLDCLAIM + CLM_FREQ +
## REVOKED + MVR_PTS + CAR_AGE + URBANICITY + CAR_AGE_BRAND_NEW_FLAG +
## CLM_FREQ_ZERO + HOME_VAL_ZERO + MVR_PTS_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - MVR_PTS_ZERO 1 6152.9 6234.9
## - CAR_AGE 1 6152.9 6234.9
## - CLM_FREQ 1 6152.9 6234.9
## - CAR_AGE_BRAND_NEW_FLAG 1 6153.2 6235.2
## - HOME_VAL 1 6153.2 6235.2
## - HOMEKIDS 1 6153.7 6235.7
## - RED_CAR 1 6153.8 6235.8
## - AGE 1 6153.9 6235.9
## <none> 6152.6 6236.6
## - HOME_VAL_ZERO 1 6155.3 6237.3
## - YOJ 1 6155.5 6237.5
## - INCOME 1 6158.9 6240.9
## - EDUCATION 4 6168.9 6244.9
## - PARENT1 1 6163.7 6245.7
## - YOJ_ZERO 1 6164.7 6246.7
## - BLUEBOOK 1 6165.3 6247.3
## - CLM_FREQ_ZERO 1 6168.6 6250.6
## - OLDCLAIM 1 6172.3 6254.3
## - MSTATUS 1 6180.2 6262.2
## - KIDSDRIV 1 6181.2 6263.2
## - MVR_PTS 1 6185.8 6267.8
## - TIF 1 6202.1 6284.1
## - JOB 8 6220.2 6288.2
## - CAR_USE 1 6208.7 6290.7
## - TRAVTIME 1 6209.9 6291.9
## - CAR_TYPE 5 6242.2 6316.2
## - REVOKED 1 6244.6 6326.6
## - URBANICITY 1 6673.4 6755.4
##
## Step: AIC=6234.89
## TARGET_FLAG ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME + PARENT1 +
## HOME_VAL + MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE +
## BLUEBOOK + TIF + CAR_TYPE + RED_CAR + OLDCLAIM + CLM_FREQ +
## REVOKED + MVR_PTS + CAR_AGE + URBANICITY + CAR_AGE_BRAND_NEW_FLAG +
## CLM_FREQ_ZERO + HOME_VAL_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - CLM_FREQ 1 6153.2 6233.2
## - CAR_AGE 1 6153.2 6233.2
## - CAR_AGE_BRAND_NEW_FLAG 1 6153.5 6233.5
## - HOME_VAL 1 6153.5 6233.5
## - HOMEKIDS 1 6154.0 6234.0
## - RED_CAR 1 6154.1 6234.1
## - AGE 1 6154.2 6234.2
## <none> 6152.9 6234.9
## - HOME_VAL_ZERO 1 6155.5 6235.5
## - YOJ 1 6155.7 6235.7
## - INCOME 1 6159.1 6239.1
## - EDUCATION 4 6169.0 6243.0
## - PARENT1 1 6163.9 6243.9
## - YOJ_ZERO 1 6165.0 6245.0
## - BLUEBOOK 1 6165.5 6245.5
## - CLM_FREQ_ZERO 1 6169.0 6249.0
## - OLDCLAIM 1 6172.6 6252.6
## - MSTATUS 1 6180.4 6260.4
## - KIDSDRIV 1 6181.2 6261.2
## - TIF 1 6202.2 6282.2
## - JOB 8 6220.4 6286.4
## - MVR_PTS 1 6206.5 6286.5
## - CAR_USE 1 6209.0 6289.0
## - TRAVTIME 1 6210.3 6290.3
## - CAR_TYPE 5 6242.5 6314.5
## - REVOKED 1 6244.9 6324.9
## - URBANICITY 1 6673.4 6753.4
##
## Step: AIC=6233.17
## TARGET_FLAG ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME + PARENT1 +
## HOME_VAL + MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE +
## BLUEBOOK + TIF + CAR_TYPE + RED_CAR + OLDCLAIM + REVOKED +
## MVR_PTS + CAR_AGE + URBANICITY + CAR_AGE_BRAND_NEW_FLAG +
## CLM_FREQ_ZERO + HOME_VAL_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - CAR_AGE 1 6153.4 6231.4
## - CAR_AGE_BRAND_NEW_FLAG 1 6153.7 6231.7
## - HOME_VAL 1 6153.7 6231.7
## - HOMEKIDS 1 6154.3 6232.3
## - RED_CAR 1 6154.4 6232.4
## - AGE 1 6154.4 6232.4
## <none> 6153.2 6233.2
## - HOME_VAL_ZERO 1 6155.8 6233.8
## - YOJ 1 6156.0 6234.0
## - INCOME 1 6159.4 6237.4
## - EDUCATION 4 6169.3 6241.3
## - PARENT1 1 6164.2 6242.2
## - YOJ_ZERO 1 6165.3 6243.3
## - BLUEBOOK 1 6165.8 6243.8
## - OLDCLAIM 1 6172.9 6250.9
## - MSTATUS 1 6180.7 6258.7
## - KIDSDRIV 1 6181.6 6259.6
## - CLM_FREQ_ZERO 1 6199.3 6277.3
## - TIF 1 6202.5 6280.5
## - JOB 8 6220.6 6284.6
## - MVR_PTS 1 6206.7 6284.7
## - CAR_USE 1 6209.3 6287.3
## - TRAVTIME 1 6210.8 6288.8
## - CAR_TYPE 5 6242.9 6312.9
## - REVOKED 1 6245.0 6323.0
## - URBANICITY 1 6673.8 6751.8
##
## Step: AIC=6231.44
## TARGET_FLAG ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME + PARENT1 +
## HOME_VAL + MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE +
## BLUEBOOK + TIF + CAR_TYPE + RED_CAR + OLDCLAIM + REVOKED +
## MVR_PTS + URBANICITY + CAR_AGE_BRAND_NEW_FLAG + CLM_FREQ_ZERO +
## HOME_VAL_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - CAR_AGE_BRAND_NEW_FLAG 1 6153.7 6229.7
## - HOME_VAL 1 6154.0 6230.0
## - HOMEKIDS 1 6154.5 6230.5
## - RED_CAR 1 6154.7 6230.7
## - AGE 1 6154.7 6230.7
## <none> 6153.4 6231.4
## - HOME_VAL_ZERO 1 6156.1 6232.1
## - YOJ 1 6156.3 6232.3
## - INCOME 1 6159.6 6235.6
## - EDUCATION 4 6169.3 6239.3
## - PARENT1 1 6164.4 6240.4
## - YOJ_ZERO 1 6165.7 6241.7
## - BLUEBOOK 1 6166.1 6242.1
## - OLDCLAIM 1 6173.1 6249.1
## - MSTATUS 1 6181.0 6257.0
## - KIDSDRIV 1 6181.9 6257.9
## - CLM_FREQ_ZERO 1 6199.7 6275.7
## - TIF 1 6202.7 6278.7
## - MVR_PTS 1 6206.9 6282.9
## - JOB 8 6221.1 6283.1
## - CAR_USE 1 6209.6 6285.6
## - TRAVTIME 1 6211.0 6287.0
## - CAR_TYPE 5 6243.1 6311.1
## - REVOKED 1 6245.1 6321.1
## - URBANICITY 1 6674.2 6750.2
##
## Step: AIC=6229.72
## TARGET_FLAG ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME + PARENT1 +
## HOME_VAL + MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE +
## BLUEBOOK + TIF + CAR_TYPE + RED_CAR + OLDCLAIM + REVOKED +
## MVR_PTS + URBANICITY + CLM_FREQ_ZERO + HOME_VAL_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - HOME_VAL 1 6154.3 6228.3
## - HOMEKIDS 1 6154.8 6228.8
## - RED_CAR 1 6155.0 6229.0
## - AGE 1 6155.0 6229.0
## <none> 6153.7 6229.7
## - HOME_VAL_ZERO 1 6156.4 6230.4
## - YOJ 1 6156.6 6230.6
## - INCOME 1 6160.0 6234.0
## - PARENT1 1 6164.6 6238.6
## - YOJ_ZERO 1 6166.0 6240.0
## - BLUEBOOK 1 6166.4 6240.4
## - EDUCATION 4 6173.1 6241.1
## - OLDCLAIM 1 6173.4 6247.4
## - MSTATUS 1 6181.4 6255.4
## - KIDSDRIV 1 6182.1 6256.1
## - CLM_FREQ_ZERO 1 6199.9 6273.9
## - TIF 1 6202.8 6276.8
## - MVR_PTS 1 6207.4 6281.4
## - JOB 8 6221.5 6281.5
## - CAR_USE 1 6210.0 6284.0
## - TRAVTIME 1 6211.2 6285.2
## - CAR_TYPE 5 6243.5 6309.5
## - REVOKED 1 6245.3 6319.3
## - URBANICITY 1 6674.7 6748.7
##
## Step: AIC=6228.26
## TARGET_FLAG ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME + PARENT1 +
## MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE + BLUEBOOK +
## TIF + CAR_TYPE + RED_CAR + OLDCLAIM + REVOKED + MVR_PTS +
## URBANICITY + CLM_FREQ_ZERO + HOME_VAL_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - HOMEKIDS 1 6155.4 6227.4
## - RED_CAR 1 6155.5 6227.5
## - AGE 1 6155.6 6227.6
## <none> 6154.3 6228.3
## - YOJ 1 6157.1 6229.1
## - PARENT1 1 6164.9 6236.9
## - INCOME 1 6165.2 6237.2
## - YOJ_ZERO 1 6166.4 6238.4
## - BLUEBOOK 1 6166.9 6238.9
## - EDUCATION 4 6173.9 6239.9
## - HOME_VAL_ZERO 1 6168.2 6240.2
## - OLDCLAIM 1 6174.1 6246.1
## - KIDSDRIV 1 6182.5 6254.5
## - MSTATUS 1 6182.6 6254.6
## - CLM_FREQ_ZERO 1 6201.1 6273.1
## - TIF 1 6203.5 6275.5
## - MVR_PTS 1 6207.7 6279.7
## - JOB 8 6223.0 6281.0
## - CAR_USE 1 6210.5 6282.5
## - TRAVTIME 1 6211.7 6283.7
## - CAR_TYPE 5 6243.9 6307.9
## - REVOKED 1 6245.9 6317.9
## - URBANICITY 1 6675.2 6747.2
##
## Step: AIC=6227.43
## TARGET_FLAG ~ KIDSDRIV + AGE + YOJ + INCOME + PARENT1 + MSTATUS +
## EDUCATION + JOB + TRAVTIME + CAR_USE + BLUEBOOK + TIF + CAR_TYPE +
## RED_CAR + OLDCLAIM + REVOKED + MVR_PTS + URBANICITY + CLM_FREQ_ZERO +
## HOME_VAL_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## - RED_CAR 1 6156.7 6226.7
## <none> 6155.4 6227.4
## - AGE 1 6158.4 6228.4
## - YOJ 1 6159.7 6229.7
## - INCOME 1 6166.3 6236.3
## - BLUEBOOK 1 6168.0 6238.0
## - EDUCATION 4 6175.2 6239.2
## - HOME_VAL_ZERO 1 6169.4 6239.4
## - YOJ_ZERO 1 6169.6 6239.6
## - PARENT1 1 6172.1 6242.1
## - OLDCLAIM 1 6175.4 6245.4
## - MSTATUS 1 6182.6 6252.6
## - KIDSDRIV 1 6197.1 6267.1
## - CLM_FREQ_ZERO 1 6202.6 6272.6
## - TIF 1 6204.3 6274.3
## - MVR_PTS 1 6208.9 6278.9
## - JOB 8 6224.4 6280.4
## - CAR_USE 1 6211.8 6281.8
## - TRAVTIME 1 6212.7 6282.7
## - CAR_TYPE 5 6245.8 6307.8
## - REVOKED 1 6247.7 6317.7
## - URBANICITY 1 6676.1 6746.1
##
## Step: AIC=6226.71
## TARGET_FLAG ~ KIDSDRIV + AGE + YOJ + INCOME + PARENT1 + MSTATUS +
## EDUCATION + JOB + TRAVTIME + CAR_USE + BLUEBOOK + TIF + CAR_TYPE +
## OLDCLAIM + REVOKED + MVR_PTS + URBANICITY + CLM_FREQ_ZERO +
## HOME_VAL_ZERO + YOJ_ZERO
##
## Df Deviance AIC
## <none> 6156.7 6226.7
## - AGE 1 6159.6 6227.6
## - YOJ 1 6161.0 6229.0
## - INCOME 1 6167.7 6235.7
## - EDUCATION 4 6176.2 6238.2
## - HOME_VAL_ZERO 1 6170.8 6238.8
## - YOJ_ZERO 1 6171.0 6239.0
## - BLUEBOOK 1 6172.3 6240.3
## - PARENT1 1 6173.3 6241.3
## - OLDCLAIM 1 6176.5 6244.5
## - MSTATUS 1 6184.0 6252.0
## - KIDSDRIV 1 6198.1 6266.1
## - CLM_FREQ_ZERO 1 6203.8 6271.8
## - TIF 1 6205.7 6273.7
## - MVR_PTS 1 6210.1 6278.1
## - JOB 8 6225.1 6279.1
## - CAR_USE 1 6213.0 6281.0
## - TRAVTIME 1 6214.2 6282.2
## - CAR_TYPE 5 6249.8 6309.8
## - REVOKED 1 6249.0 6317.0
## - URBANICITY 1 6677.9 6745.9
##
## Call:
## glm(formula = TARGET_FLAG ~ KIDSDRIV + AGE + YOJ + INCOME + PARENT1 +
## MSTATUS + EDUCATION + JOB + TRAVTIME + CAR_USE + BLUEBOOK +
## TIF + CAR_TYPE + OLDCLAIM + REVOKED + MVR_PTS + URBANICITY +
## CLM_FREQ_ZERO + HOME_VAL_ZERO + YOJ_ZERO, family = binomial,
## data = partial_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5999 -0.7089 -0.3973 0.5985 3.1602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.873652125 0.375810164 -7.647 2.06e-14 ***
## KIDSDRIV 0.379711321 0.058791202 6.459 1.06e-10 ***
## AGE -0.006918847 0.004084100 -1.694 0.090248 .
## YOJ 0.026258085 0.012686102 2.070 0.038468 *
## INCOME -0.000003524 0.000001071 -3.290 0.001003 **
## PARENT1Yes 0.442056765 0.108735047 4.065 4.79e-05 ***
## MSTATUSYes -0.483193353 0.091867292 -5.260 1.44e-07 ***
## EDUCATIONBachelors -0.390671272 0.118187266 -3.306 0.000948 ***
## EDUCATIONHigh School -0.008328059 0.103144018 -0.081 0.935647
## EDUCATIONMasters -0.307768717 0.176130854 -1.747 0.080570 .
## EDUCATIONPhD -0.234536686 0.218701408 -1.072 0.283538
## JOBBlue Collar 0.437402598 0.201950959 2.166 0.030320 *
## JOBClerical 0.617857593 0.213305023 2.897 0.003772 **
## JOBDoctor -0.389837436 0.287299969 -1.357 0.174813
## JOBHome Maker 0.253990414 0.230938981 1.100 0.271412
## JOBLawyer 0.183255110 0.186148696 0.984 0.324892
## JOBManager -0.497691634 0.187136917 -2.660 0.007826 **
## JOBProfessional 0.271840311 0.193745542 1.403 0.160593
## JOBStudent 0.125877679 0.239830494 0.525 0.599680
## TRAVTIME 0.015487790 0.002045669 7.571 3.70e-14 ***
## CAR_USEPrivate -0.745473050 0.100155709 -7.443 9.83e-14 ***
## BLUEBOOK -0.000020224 0.000005163 -3.917 8.97e-05 ***
## TIF -0.055018288 0.008001181 -6.876 6.14e-12 ***
## CAR_TYPEPanel Truck 0.639998427 0.164019062 3.902 9.54e-05 ***
## CAR_TYPEPickup 0.581691881 0.109450271 5.315 1.07e-07 ***
## CAR_TYPESports Car 0.955740795 0.117586464 8.128 4.36e-16 ***
## CAR_TYPESUV 0.747453911 0.093618654 7.984 1.42e-15 ***
## CAR_TYPEVan 0.577538238 0.134018251 4.309 1.64e-05 ***
## OLDCLAIM -0.000019849 0.000004522 -4.389 1.14e-05 ***
## REVOKEDYes 0.972042993 0.100450955 9.677 < 2e-16 ***
## MVR_PTS 0.111334115 0.015311784 7.271 3.56e-13 ***
## URBANICITYHighly Urban/ Urban 2.341311997 0.121148200 19.326 < 2e-16 ***
## CLM_FREQ_ZERO -0.590409632 0.085811935 -6.880 5.97e-12 ***
## HOME_VAL_ZERO 0.339482037 0.090688743 3.743 0.000182 ***
## YOJ_ZERO 0.773385257 0.205374326 3.766 0.000166 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 8007.9 on 6937 degrees of freedom
## Residual deviance: 6156.7 on 6903 degrees of freedom
## AIC: 6226.7
##
## Number of Fisher Scoring iterations: 5
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8802 -3101 -1406 564 98959
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5653.023 173.771 32.532 < 2e-16 ***
## KIDSDRIV 20.884 210.715 0.099 0.92106
## AGE 156.030 217.453 0.718 0.47314
## HOMEKIDS 124.531 267.784 0.465 0.64196
## YOJ -88.830 330.963 -0.268 0.78842
## INCOME -305.388 313.302 -0.975 0.32982
## PARENT1Yes 212.990 257.277 0.828 0.40786
## HOME_VAL -274.299 405.080 -0.677 0.49840
## MSTATUSYes -442.846 269.372 -1.644 0.10035
## SEXM 663.313 343.061 1.934 0.05333 .
## EDUCATIONBachelors 150.346 289.651 0.519 0.60378
## `EDUCATIONHigh School` -68.974 262.654 -0.263 0.79288
## EDUCATIONMasters 349.404 410.342 0.851 0.39461
## EDUCATIONPhD 658.120 319.491 2.060 0.03955 *
## `JOBBlue Collar` 79.295 552.362 0.144 0.88587
## JOBClerical -30.120 475.920 -0.063 0.94954
## JOBDoctor -316.361 220.795 -1.433 0.15208
## `JOBHome Maker` -205.680 379.385 -0.542 0.58779
## JOBLawyer 67.629 281.258 0.240 0.81001
## JOBManager -274.796 276.350 -0.994 0.32017
## JOBProfessional 159.809 387.101 0.413 0.67978
## JOBStudent -112.470 455.657 -0.247 0.80507
## TRAVTIME 80.362 176.657 0.455 0.64923
## CAR_USEPrivate -59.609 277.029 -0.215 0.82966
## BLUEBOOK 872.536 265.406 3.288 0.00103 **
## TIF -175.266 175.476 -0.999 0.31803
## `CAR_TYPEPanel Truck` -2.868 276.461 -0.010 0.99172
## CAR_TYPEPickup 114.732 252.885 0.454 0.65011
## `CAR_TYPESports Car` 439.541 276.502 1.590 0.11209
## CAR_TYPESUV 446.367 324.892 1.374 0.16965
## CAR_TYPEVan 191.717 233.754 0.820 0.41223
## RED_CARyes 1.193 235.962 0.005 0.99597
## OLDCLAIM 438.228 261.818 1.674 0.09435 .
## CLM_FREQ -75.347 310.972 -0.242 0.80858
## REVOKEDYes -450.643 225.736 -1.996 0.04605 *
## MVR_PTS 257.935 252.125 1.023 0.30643
## CAR_AGE -777.886 360.228 -2.159 0.03095 *
## `URBANICITYHighly Urban/ Urban` 62.035 178.637 0.347 0.72843
## CAR_AGE_BRAND_NEW_FLAG -373.763 292.499 -1.278 0.20148
## CLM_FREQ_ZERO 275.939 350.079 0.788 0.43067
## HOME_VAL_ZERO -598.813 398.309 -1.503 0.13292
## MVR_PTS_ZERO -292.075 240.335 -1.215 0.22442
## YOJ_ZERO -253.584 359.118 -0.706 0.48020
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7440 on 1790 degrees of freedom
## Multiple R-squared: 0.03754, Adjusted R-squared: 0.01496
## F-statistic: 1.663 on 42 and 1790 DF, p-value: 0.005087
##
## Call:
## lm(formula = TARGET_AMT ~ MSTATUS + SEX + BLUEBOOK + MVR_PTS +
## CAR_AGE + HOME_VAL_ZERO, data = partial_train_mv)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7820 -3061 -1551 443 100279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4777.20833 588.86348 8.113 9.0e-16 ***
## MSTATUSYes -1108.59240 426.54335 -2.599 0.00942 **
## SEXM 796.89259 349.87287 2.278 0.02286 *
## BLUEBOOK 0.09628 0.02110 4.562 5.4e-06 ***
## MVR_PTS 178.13202 67.08520 2.655 0.00799 **
## CAR_AGE -49.64145 32.35011 -1.535 0.12508
## HOME_VAL_ZERO -983.74263 436.89701 -2.252 0.02446 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7419 on 1826 degrees of freedom
## Multiple R-squared: 0.02367, Adjusted R-squared: 0.02046
## F-statistic: 7.377 on 6 and 1826 DF, p-value: 0.00000008168
## Estimated transformation parameters
## AGE BLUEBOOK CAR_AGE CLM_FREQ HOME_VAL HOMEKIDS
## -3.26296283 0.45557302 0.53194976 0.19001180 0.95680518 0.74940149
## INCOME KIDSDRIV MVR_PTS OLDCLAIM TARGET_AMT TIF
## 0.88488291 -1.57276435 0.20739382 -0.17762401 0.01363060 -0.02223113
## TRAVTIME YOJ
## 0.76666778 1.72079887
##
## Call:
## lm(formula = log(TARGET_AMT) ~ . + I(BLUEBOOK^0.5) + I(MVR_PTS^0.33) +
## I(CAR_AGE^0.5) + I(CLM_FREQ^0.33), data = partial_train_mv)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6691 -0.4037 0.0339 0.4154 3.1820
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.8618719723 0.9472455061 8.300 < 2e-16 ***
## KIDSDRIV -0.0210091648 0.0358758780 -0.586 0.55821
## AGE 0.0023379990 0.0024370582 0.959 0.33751
## HOMEKIDS 0.0178879635 0.0238438458 0.750 0.45323
## YOJ -0.0101938005 0.0079900092 -1.276 0.20219
## INCOME -0.0000009382 0.0000008012 -1.171 0.24175
## PARENT1Yes 0.0542884233 0.0662482480 0.819 0.41263
## HOME_VAL -0.0000001543 0.0000003742 -0.412 0.68015
## MSTATUSYes -0.1245999934 0.0578564797 -2.154 0.03140 *
## SEXM 0.0585241847 0.0746520574 0.784 0.43317
## EDUCATIONBachelors -0.0227854304 0.0734102183 -0.310 0.75630
## EDUCATIONHigh School 0.0358840922 0.0590036663 0.608 0.54315
## EDUCATIONMasters 0.1631380543 0.1225242620 1.331 0.18320
## EDUCATIONPhD 0.3587055824 0.1485019937 2.415 0.01581 *
## JOBBlue Collar 0.0164176109 0.1303075854 0.126 0.89975
## JOBClerical 0.0239650765 0.1364019973 0.176 0.86055
## JOBDoctor -0.1282683879 0.1938221259 -0.662 0.50820
## JOBHome Maker -0.0528801565 0.1451729156 -0.364 0.71571
## JOBLawyer -0.0117809735 0.1170204174 -0.101 0.91982
## JOBManager 0.0058476712 0.1214736742 0.048 0.96161
## JOBProfessional 0.0524421669 0.1293057044 0.406 0.68511
## JOBStudent 0.0400467308 0.1498919507 0.267 0.78937
## TRAVTIME 0.0005816588 0.0012507292 0.465 0.64195
## CAR_USEPrivate 0.0081225733 0.0596390593 0.136 0.89168
## BLUEBOOK -0.0000306915 0.0000138680 -2.213 0.02702 *
## TIF -0.0043425539 0.0047738415 -0.910 0.36313
## CAR_TYPEPanel Truck 0.1526286747 0.1121675917 1.361 0.17377
## CAR_TYPEPickup 0.0608552491 0.0671519795 0.906 0.36494
## CAR_TYPESports Car 0.0712524115 0.0847383777 0.841 0.40054
## CAR_TYPESUV 0.0653146886 0.0757588187 0.862 0.38873
## CAR_TYPEVan -0.0164653177 0.0874466332 -0.188 0.85067
## RED_CARyes 0.0453761487 0.0559554767 0.811 0.41751
## OLDCLAIM 0.0000062250 0.0000027891 2.232 0.02574 *
## CLM_FREQ 0.0040237156 0.1777829903 0.023 0.98195
## REVOKEDYes -0.1221953363 0.0601973471 -2.030 0.04251 *
## MVR_PTS -0.0137411683 0.0442326125 -0.311 0.75610
## CAR_AGE -0.0018976163 0.0455077607 -0.042 0.96674
## URBANICITYHighly Urban/ Urban 0.0800512150 0.0840730328 0.952 0.34114
## CAR_AGE_BRAND_NEW_FLAG -0.1946721967 0.2121402535 -0.918 0.35892
## CLM_FREQ_ZERO -0.1921600925 0.7141855962 -0.269 0.78791
## HOME_VAL_ZERO -0.1237330016 0.0877881583 -1.409 0.15888
## MVR_PTS_ZERO 0.1078205663 0.3155517203 0.342 0.73263
## YOJ_ZERO -0.1520776049 0.1216682410 -1.250 0.21149
## I(BLUEBOOK^0.5) 0.0097377414 0.0031457081 3.096 0.00199 **
## I(MVR_PTS^0.33) 0.1845457182 0.3197204082 0.577 0.56387
## I(CAR_AGE^0.5) -0.0811791487 0.2885830700 -0.281 0.77851
## I(CLM_FREQ^0.33) -0.2405682394 0.8650852203 -0.278 0.78098
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7989 on 1786 degrees of freedom
## Multiple R-squared: 0.04349, Adjusted R-squared: 0.01886
## F-statistic: 1.765 on 46 and 1786 DF, p-value: 0.001275
##
## Call:
## lm(formula = log(TARGET_AMT) ~ INCOME + MSTATUS + SEX + EDUCATION +
## BLUEBOOK + OLDCLAIM + REVOKED + CAR_AGE_BRAND_NEW_FLAG +
## HOME_VAL_ZERO + I(BLUEBOOK^0.5) + I(MVR_PTS^0.33) + I(CAR_AGE^0.5) +
## I(CLM_FREQ^0.33), data = partial_train_mv)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6748 -0.4062 0.0355 0.4074 3.1729
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.9654943831 0.2125734796 37.472 < 2e-16 ***
## INCOME -0.0000008658 0.0000005842 -1.482 0.13847
## MSTATUSYes -0.1409685275 0.0463073338 -3.044 0.00237 **
## SEXM 0.0775850454 0.0377528615 2.055 0.04001 *
## EDUCATIONBachelors -0.0212243974 0.0657778562 -0.323 0.74698
## EDUCATIONHigh School 0.0361931277 0.0548497334 0.660 0.50943
## EDUCATIONMasters 0.1343898368 0.0866590451 1.551 0.12113
## EDUCATIONPhD 0.2751309338 0.1153600896 2.385 0.01718 *
## BLUEBOOK -0.0000240335 0.0000118019 -2.036 0.04185 *
## OLDCLAIM 0.0000064947 0.0000026867 2.417 0.01573 *
## REVOKEDYes -0.1220831926 0.0587234087 -2.079 0.03776 *
## CAR_AGE_BRAND_NEW_FLAG -0.1915551522 0.0922741045 -2.076 0.03804 *
## HOME_VAL_ZERO -0.0855268286 0.0474517203 -1.802 0.07165 .
## I(BLUEBOOK^0.5) 0.0084083484 0.0028247512 2.977 0.00295 **
## I(MVR_PTS^0.33) 0.0857325464 0.0264456014 3.242 0.00121 **
## I(CAR_AGE^0.5) -0.0867993462 0.0443324913 -1.958 0.05039 .
## I(CLM_FREQ^0.33) -0.0886650029 0.0377122207 -2.351 0.01882 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7953 on 1816 degrees of freedom
## Multiple R-squared: 0.0362, Adjusted R-squared: 0.02771
## F-statistic: 4.263 on 16 and 1816 DF, p-value: 0.00000003044
##
## Call:
## lm(formula = TARGET_AMT ~ ., data = partial_train_mv, weights = 1/resid_sq)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -1.7050 -0.9865 -0.9453 0.9913 2.1040
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5013.3146636 169.8293491 29.520 < 2e-16 ***
## KIDSDRIV 46.0780950 14.3524004 3.210 0.001349 **
## AGE 14.0736527 1.4533264 9.684 < 2e-16 ***
## HOMEKIDS 108.9665037 15.7935859 6.899 7.22e-12 ***
## YOJ -26.9412966 5.1215999 -5.260 1.61e-07 ***
## INCOME -0.0074204 0.0004805 -15.442 < 2e-16 ***
## PARENT1Yes 497.2419584 38.9525964 12.765 < 2e-16 ***
## HOME_VAL -0.0026167 0.0002567 -10.194 < 2e-16 ***
## MSTATUSYes -930.1632547 41.4383092 -22.447 < 2e-16 ***
## SEXM 1258.6013109 49.6758802 25.336 < 2e-16 ***
## EDUCATIONBachelors 350.5417079 44.2007405 7.931 3.80e-15 ***
## EDUCATIONHigh School -141.6123146 38.1658400 -3.710 0.000213 ***
## EDUCATIONMasters 917.3368111 95.3765314 9.618 < 2e-16 ***
## EDUCATIONPhD 2864.0199156 105.1189734 27.246 < 2e-16 ***
## JOBBlue Collar -71.3351821 110.0807068 -0.648 0.517051
## JOBClerical -366.3859695 110.8428023 -3.305 0.000967 ***
## JOBDoctor -2869.2130389 130.7526071 -21.944 < 2e-16 ***
## JOBHome Maker -973.1898607 117.4512731 -8.286 2.27e-16 ***
## JOBLawyer 57.1661485 119.7928048 0.477 0.633272
## JOBManager -1344.1614620 107.9455841 -12.452 < 2e-16 ***
## JOBProfessional 252.5066341 113.3406601 2.228 0.026014 *
## JOBStudent -564.2579997 116.1794064 -4.857 1.30e-06 ***
## TRAVTIME 5.3371528 0.5845873 9.130 < 2e-16 ***
## CAR_USEPrivate -109.0342524 34.3349297 -3.176 0.001521 **
## BLUEBOOK 0.1009506 0.0020248 49.858 < 2e-16 ***
## TIF -45.5235109 3.3200795 -13.712 < 2e-16 ***
## CAR_TYPEPanel Truck 19.3242441 77.8426398 0.248 0.803971
## CAR_TYPEPickup 282.7959653 44.1532341 6.405 1.92e-10 ***
## CAR_TYPESports Car 1237.6277818 47.6169948 25.991 < 2e-16 ***
## CAR_TYPESUV 930.7308839 41.7413261 22.298 < 2e-16 ***
## CAR_TYPEVan 496.5832566 100.9218389 4.920 9.43e-07 ***
## RED_CARyes 14.5530475 30.9950890 0.470 0.638750
## OLDCLAIM 0.0433948 0.0014985 28.958 < 2e-16 ***
## CLM_FREQ -46.9505784 15.6393228 -3.002 0.002718 **
## REVOKEDYes -1111.6828482 30.1370242 -36.888 < 2e-16 ***
## MVR_PTS 93.1809366 7.2037077 12.935 < 2e-16 ***
## CAR_AGE -140.9543516 3.6884186 -38.215 < 2e-16 ***
## URBANICITYHighly Urban/ Urban 350.4255414 65.0788947 5.385 8.22e-08 ***
## CAR_AGE_BRAND_NEW_FLAG -857.5151238 37.7995698 -22.686 < 2e-16 ***
## CLM_FREQ_ZERO 587.2243291 47.8793559 12.265 < 2e-16 ***
## HOME_VAL_ZERO -1327.4231518 52.7637674 -25.158 < 2e-16 ***
## MVR_PTS_ZERO -611.3058842 31.4806654 -19.418 < 2e-16 ***
## YOJ_ZERO -909.4449823 68.4056165 -13.295 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.998 on 1790 degrees of freedom
## Multiple R-squared: 0.9924, Adjusted R-squared: 0.9922
## F-statistic: 5543 on 42 and 1790 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = TARGET_AMT ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME +
## PARENT1 + HOME_VAL + MSTATUS + SEX + EDUCATION + JOB + TRAVTIME +
## CAR_USE + BLUEBOOK + TIF + CAR_TYPE + OLDCLAIM + CLM_FREQ +
## REVOKED + MVR_PTS + CAR_AGE + URBANICITY + CAR_AGE_BRAND_NEW_FLAG +
## CLM_FREQ_ZERO + HOME_VAL_ZERO + MVR_PTS_ZERO + YOJ_ZERO,
## data = partial_train_mv, weights = 1/resid_sq)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -1.6440 -0.9868 -0.9459 0.9922 2.1758
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5025.1478721 167.9123907 29.927 < 2e-16 ***
## KIDSDRIV 45.1661681 14.2172836 3.177 0.001514 **
## AGE 14.2850170 1.3815496 10.340 < 2e-16 ***
## HOMEKIDS 111.7912434 14.5996813 7.657 3.09e-14 ***
## YOJ -27.9570557 4.6412563 -6.024 2.07e-09 ***
## INCOME -0.0075050 0.0004454 -16.851 < 2e-16 ***
## PARENT1Yes 498.3142146 38.8771318 12.818 < 2e-16 ***
## HOME_VAL -0.0025917 0.0002510 -10.324 < 2e-16 ***
## MSTATUSYes -929.7131347 41.4182017 -22.447 < 2e-16 ***
## SEXM 1267.1527987 46.2066157 27.424 < 2e-16 ***
## EDUCATIONBachelors 345.4232992 42.8260538 8.066 1.32e-15 ***
## EDUCATIONHigh School -145.7922195 37.1049828 -3.929 8.85e-05 ***
## EDUCATIONMasters 910.3418282 94.1853067 9.665 < 2e-16 ***
## EDUCATIONPhD 2857.8909048 104.2826326 27.405 < 2e-16 ***
## JOBBlue Collar -75.0471654 109.7725533 -0.684 0.494278
## JOBClerical -374.9718160 109.3002370 -3.431 0.000616 ***
## JOBDoctor -2869.2196494 130.7241478 -21.949 < 2e-16 ***
## JOBHome Maker -980.7323639 116.3222104 -8.431 < 2e-16 ***
## JOBLawyer 61.7666933 119.3654315 0.517 0.604900
## JOBManager -1344.6621088 107.9168243 -12.460 < 2e-16 ***
## JOBProfessional 249.0568030 113.0776385 2.203 0.027755 *
## JOBStudent -574.5636422 114.0624050 -5.037 5.20e-07 ***
## TRAVTIME 5.3109892 0.5817988 9.129 < 2e-16 ***
## CAR_USEPrivate -109.3684710 34.3200789 -3.187 0.001464 **
## BLUEBOOK 0.1011290 0.0019884 50.861 < 2e-16 ***
## TIF -45.8746437 3.2340539 -14.185 < 2e-16 ***
## CAR_TYPEPanel Truck 20.2207892 77.8022794 0.260 0.794971
## CAR_TYPEPickup 278.9610857 43.3817941 6.430 1.63e-10 ***
## CAR_TYPESports Car 1237.3190702 47.6020924 25.993 < 2e-16 ***
## CAR_TYPESUV 931.5627835 41.6946291 22.343 < 2e-16 ***
## CAR_TYPEVan 494.7422106 100.8236895 4.907 1.01e-06 ***
## OLDCLAIM 0.0434463 0.0014942 29.077 < 2e-16 ***
## CLM_FREQ -47.4007508 15.6065084 -3.037 0.002422 **
## REVOKEDYes -1111.6521342 30.1303939 -36.895 < 2e-16 ***
## MVR_PTS 93.0639003 7.1978269 12.929 < 2e-16 ***
## CAR_AGE -140.8432655 3.6800217 -38.272 < 2e-16 ***
## URBANICITYHighly Urban/ Urban 347.4177422 64.7487450 5.366 9.12e-08 ***
## CAR_AGE_BRAND_NEW_FLAG -856.4592656 37.7244062 -22.703 < 2e-16 ***
## CLM_FREQ_ZERO 588.9764916 47.7233170 12.341 < 2e-16 ***
## HOME_VAL_ZERO -1325.0426249 52.5081822 -25.235 < 2e-16 ***
## MVR_PTS_ZERO -612.1860561 31.4179627 -19.485 < 2e-16 ***
## YOJ_ZERO -919.5847169 64.8931751 -14.171 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9977 on 1791 degrees of freedom
## Multiple R-squared: 0.9924, Adjusted R-squared: 0.9922
## F-statistic: 5681 on 41 and 1791 DF, p-value: < 2.2e-16
## [1] 0.7800491
## predicted
## true 0 1
## 0 823 78
## 1 191 131
## [1] 0.7833197
## predicted
## true 0 1
## 0 822 79
## 1 186 136
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 837 212
## 1 64 110
##
## Accuracy : 0.7743
## 95% CI : (0.7498, 0.7975)
## No Information Rate : 0.7367
## P-Value [Acc > NIR] : 0.001362
##
## Kappa : 0.3175
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Sensitivity : 0.9290
## Specificity : 0.3416
## Pos Pred Value : 0.7979
## Neg Pred Value : 0.6322
## Prevalence : 0.7367
## Detection Rate : 0.6844
## Detection Prevalence : 0.8577
## Balanced Accuracy : 0.6353
##
## 'Positive' Class : 0
##


## RMSE
## Model 4: 0
## Model 5: 0
## Model 6: 0
## Model 7: 0
## 1 2 3 4 5 6
## 0.1253002 0.2650264 0.1354699 0.3458806 0.1234012 0.2787014
## 1 2 3 4 5 6
## 0.125300235 0.265026407 0.135469877 0.345880640 0.123401226 0.278701439
## 7 8 9 10 11 12
## 0.379799141 0.393002543 0.035483212 0.103457728 0.023351681 0.580603858
## 13 14 15 16 17 18
## 0.873195148 0.104413435 0.038231848 0.666097354 0.700750693 0.160391926
## 19 20 21 22 23 24
## 0.612408754 0.534225055 0.169905429 0.380851263 0.048454827 0.432999739
## 25 26 27 28 29 30
## 0.320391515 0.415737663 0.380160887 0.501203622 0.059928976 0.123325960
## 31 32 33 34 35 36
## 0.138171970 0.485431389 0.068738815 0.176917927 0.181516151 0.054490849
## 37 38 39 40 41 42
## 0.169132384 0.158206020 0.084983206 0.609803579 0.279214410 0.558141632
## 43 44 45 46 47 48
## 0.015836222 0.520263310 0.004625207 0.166180387 0.068645741 0.404442275
## 49 50 51 52 53 54
## 0.016375316 0.662688920 0.161852308 0.340624645 0.764557892 0.063949051
## 55 56 57 58 59 60
## 0.260884118 0.214364302 0.365055213 0.462683354 0.073062375 0.576943142
## 61 62 63 64 65 66
## 0.014085762 0.044879322 0.398552098 0.135787881 0.045558216 0.307294214
## 67 68 69 70 71 72
## 0.827639574 0.581024279 0.182005868 0.065882557 0.024900309 0.295527953
## 73 74 75 76 77 78
## 0.667988985 0.259332284 0.686360501 0.249953969 0.404334344 0.272947958
## 79 80 81 82 83 84
## 0.201955685 0.041009311 0.580756339 0.419762795 0.453453538 0.032848003
## 85 86 87 88 89 90
## 0.497776032 0.616891024 0.291501167 0.323098456 0.038087304 0.698755044
## 91 92 93 94 95 96
## 0.070203704 0.085076189 0.048202052 0.146454038 0.051235867 0.150161586
## 97 98 99 100 101 102
## 0.007869956 0.416138057 0.271925269 0.129504918 0.434364954 0.416305802
## 103 104 105 106 107 108
## 0.653119711 0.667440023 0.085642889 0.119093420 0.180889516 0.098047854
## 109 110 111 112 113 114
## 0.517128105 0.293019779 0.697708767 0.030398112 0.223372273 0.193146888
## 115 116 117 118 119 120
## 0.672123540 0.036513869 0.017165716 0.772026047 0.544795703 0.153068025
## 121 122 123 124 125 126
## 0.290462844 0.832987475 0.711173819 0.375037967 0.233942451 0.422919739
## 127 128 129 130 131 132
## 0.381432812 0.221766413 0.218691045 0.086686866 0.090815172 0.158636972
## 133 134 135 136 137 138
## 0.213762198 0.073608516 0.119878036 0.227176081 0.843890574 0.561910138
## 139 140 141 142 143 144
## 0.045650772 0.080835362 0.044141091 0.792177793 0.113283656 0.157172289
## 145 146 147 148 149 150
## 0.046515319 0.580002993 0.151594127 0.097931391 0.377480917 0.026908442
## 151 152 153 154 155 156
## 0.468710305 0.306222597 0.740615910 0.498700185 0.313000248 0.448858284
## 157 158 159 160 161 162
## 0.026836843 0.187537563 0.581058683 0.548836722 0.231155374 0.180336807
## 163 164 165 166 167 168
## 0.292677170 0.121944766 0.591818752 0.272893729 0.036847822 0.137217321
## 169 170 171 172 173 174
## 0.325880048 0.149533536 0.090128399 0.599346346 0.153294005 0.848357889
## 175 176 177 178 179 180
## 0.301242281 0.396335142 0.621213340 0.575603638 0.731766576 0.735303399
## 181 182 183 184 185 186
## 0.557453195 0.198423421 0.145182816 0.257089143 0.304431351 0.305217013
## 187 188 189 190 191 192
## 0.049855553 0.064782291 0.166785018 0.235884345 0.527473460 0.790886500
## 193 194 195 196 197 198
## 0.392926432 0.373323971 0.081860156 0.593062895 0.497914179 0.197679421
## 199 200 201 202 203 204
## 0.258630135 0.145774489 0.206602103 0.418112002 0.079449875 0.048340984
## 205 206 207 208 209 210
## 0.062392648 0.013284907 0.829135936 0.035694350 0.051216664 0.056720832
## 211 212 213 214 215 216
## 0.027983346 0.205610893 0.637101603 0.538874293 0.082824978 0.328615779
## 217 218 219 220 221 222
## 0.341671477 0.081953141 0.156914654 0.044790904 0.034872408 0.053945161
## 223 224 225 226 227 228
## 0.393948055 0.391324817 0.084102922 0.289221713 0.574675251 0.420050446
## 229 230 231 232 233 234
## 0.333578334 0.157233541 0.063781079 0.047117600 0.412375273 0.107995990
## 235 236 237 238 239 240
## 0.010038140 0.238036032 0.086735143 0.016149392 0.024017462 0.706593060
## 241 242 243 244 245 246
## 0.034909175 0.117424101 0.706582324 0.222523355 0.153192105 0.462005811
## 247 248 249 250 251 252
## 0.299386195 0.405241630 0.056684032 0.576801491 0.582826934 0.586203106
## 253 254 255 256 257 258
## 0.061050345 0.310532779 0.477226178 0.207497207 0.129535608 0.364378375
## 259 260 261 262 263 264
## 0.587795688 0.075958172 0.068254261 0.110662914 0.159159105 0.133189377
## 265 266 267 268 269 270
## 0.197628373 0.084797443 0.163591478 0.108135989 0.906663104 0.451335370
## 271 272 273 274 275 276
## 0.556725325 0.067544123 0.332364280 0.713343820 0.102448174 0.296085507
## 277 278 279 280 281 282
## 0.689940818 0.190440306 0.288400845 0.223467621 0.217392983 0.227736858
## 283 284 285 286 287 288
## 0.288979839 0.387807757 0.288775830 0.481599314 0.024323186 0.372164151
## 289 290 291 292 293 294
## 0.557228946 0.743143334 0.276523286 0.144229567 0.119498262 0.497435688
## 295 296 297 298 299 300
## 0.041632810 0.384545771 0.224295602 0.530303949 0.067657142 0.291429996
## 301 302 303 304 305 306
## 0.262027564 0.068585584 0.285174522 0.389846261 0.492530363 0.407522278
## 307 308 309 310 311 312
## 0.111212881 0.597299284 0.019651741 0.232612692 0.719040502 0.363204473
## 313 314 315 316 317 318
## 0.045474035 0.912864923 0.242587716 0.134119135 0.249555398 0.122083326
## 319 320 321 322 323 324
## 0.611193136 0.018254563 0.194743139 0.605457790 0.166734730 0.191005460
## 325 326 327 328 329 330
## 0.723501431 0.382407856 0.656964322 0.187800218 0.401872132 0.247843009
## 331 332 333 334 335 336
## 0.064339231 0.030044447 0.764103809 0.156915276 0.243254326 0.297786483
## 337 338 339 340 341 342
## 0.185349601 0.562896925 0.129504295 0.039489633 0.527041689 0.460377526
## 343 344 345 346 347 348
## 0.271871603 0.745908215 0.024972412 0.042290505 0.116347360 0.077032738
## 349 350 351 352 353 354
## 0.104458521 0.200939183 0.036399121 0.234633676 0.812932902 0.778745356
## 355 356 357 358 359 360
## 0.116878383 0.560042041 0.435166609 0.153419000 0.024571163 0.083979460
## 361 362 363 364 365 366
## 0.652496331 0.242512324 0.083838427 0.526289226 0.126564622 0.429549264
## 367 368 369 370 371 372
## 0.127216280 0.382672134 0.050392214 0.168922640 0.153953627 0.291260210
## 373 374 375 376 377 378
## 0.416964777 0.209076594 0.134847548 0.601679262 0.014181395 0.165099986
## 379 380 381 382 383 384
## 0.028460909 0.087644959 0.093681843 0.273235426 0.332834171 0.435285556
## 385 386 387 388 389 390
## 0.041020741 0.371174752 0.356716698 0.163399963 0.065691981 0.677843375
## 391 392 393 394 395 396
## 0.211937741 0.073608944 0.226560085 0.190874932 0.046504142 0.411230375
## 397 398 399 400 401 402
## 0.063080545 0.353105358 0.319955006 0.430800022 0.394952959 0.229749046
## 403 404 405 406 407 408
## 0.101050643 0.075412794 0.100462570 0.193028815 0.014217607 0.161760879
## 409 410 411 412 413 414
## 0.010424041 0.163313701 0.074555639 0.785721950 0.209868658 0.023356196
## 415 416 417 418 419 420
## 0.601808410 0.273672099 0.013888090 0.370281700 0.006699334 0.084883197
## 421 422 423 424 425 426
## 0.615899766 0.615873203 0.784441411 0.030005523 0.255541874 0.375477982
## 427 428 429 430 431 432
## 0.084063085 0.252906621 0.508174066 0.341159305 0.347731648 0.033298026
## 433 434 435 436 437 438
## 0.019243318 0.019523953 0.338808292 0.714147993 0.058160041 0.038218946
## 439 440 441 442 443 444
## 0.185752140 0.163880022 0.022750333 0.136577402 0.075118212 0.128810349
## 445 446 447 448 449 450
## 0.050676123 0.026878538 0.138130276 0.126759283 0.642974276 0.763789467
## 451 452 453 454 455 456
## 0.075580590 0.178669024 0.454009073 0.101635130 0.328236178 0.570522388
## 457 458 459 460 461 462
## 0.325639172 0.805254279 0.037314403 0.360170837 0.040765404 0.014307778
## 463 464 465 466 467 468
## 0.018492198 0.306113704 0.027348174 0.085178050 0.810519660 0.711318996
## 469 470 471 472 473 474
## 0.208141986 0.337438523 0.089764055 0.831956556 0.101816225 0.065771807
## 475 476 477 478 479 480
## 0.225263113 0.020953449 0.726034513 0.870493722 0.031395882 0.347380659
## 481 482 483 484 485 486
## 0.039852651 0.234556205 0.197016933 0.384046124 0.834298520 0.601709743
## 487 488 489 490 491 492
## 0.153255597 0.524099727 0.241166644 0.725704938 0.534259724 0.078664939
## 493 494 495 496 497 498
## 0.094436169 0.261498138 0.128876192 0.607714045 0.272456164 0.067302788
## 499 500 501 502 503 504
## 0.443388103 0.279821109 0.217610223 0.301461881 0.777363414 0.148971563
## 505 506 507 508 509 510
## 0.561927637 0.059990717 0.333816315 0.225276996 0.222037087 0.266185811
## 511 512 513 514 515 516
## 0.072367436 0.186317005 0.237163919 0.019648901 0.183437190 0.067292643
## 517 518 519 520 521 522
## 0.561859274 0.482248095 0.344820143 0.530132197 0.185790848 0.169897173
## 523 524 525 526 527 528
## 0.286855754 0.223249612 0.140490467 0.036374634 0.041969474 0.022277728
## 529 530 531 532 533 534
## 0.009027082 0.175313052 0.010258657 0.207021228 0.177457916 0.368289909
## 535 536 537 538 539 540
## 0.040655004 0.172866663 0.245650164 0.017238289 0.141953841 0.028426429
## 541 542 543 544 545 546
## 0.047207977 0.095533543 0.408908519 0.442277792 0.013900850 0.220372419
## 547 548 549 550 551 552
## 0.077531610 0.819659757 0.446990333 0.046090124 0.141651391 0.095339405
## 553 554 555 556 557 558
## 0.053958008 0.464294737 0.069545330 0.108080854 0.473993223 0.048471150
## 559 560 561 562 563 564
## 0.392117611 0.369236692 0.066679974 0.270197797 0.365074600 0.161635371
## 565 566 567 568 569 570
## 0.340159960 0.122406163 0.944157315 0.324342305 0.331596544 0.504026612
## 571 572 573 574 575 576
## 0.135350250 0.190496602 0.254557048 0.067220519 0.085856651 0.003690727
## 577 578 579 580 581 582
## 0.136387646 0.110638259 0.346241751 0.207932602 0.031123886 0.615059324
## 583 584 585 586 587 588
## 0.072610508 0.802465701 0.052686676 0.052591728 0.085731418 0.157304490
## 589 590 591 592 593 594
## 0.768684569 0.541393612 0.397165189 0.176585280 0.008352753 0.458638784
## 595 596 597 598 599 600
## 0.497018801 0.579290803 0.501716019 0.317492844 0.222843878 0.708471760
## 601 602 603 604 605 606
## 0.548617313 0.252831630 0.129860228 0.155402079 0.330985679 0.440987327
## 607 608 609 610 611 612
## 0.551809072 0.077041369 0.173963102 0.089744184 0.109122128 0.371016894
## 613 614 615 616 617 618
## 0.014841915 0.025472570 0.449744447 0.024565891 0.060360510 0.350947343
## 619 620 621 622 623 624
## 0.220701863 0.702366768 0.227852064 0.214946646 0.092218084 0.236575548
## 625 626 627 628 629 630
## 0.151072793 0.748453066 0.585173287 0.091355839 0.029452662 0.499280219
## 631 632 633 634 635 636
## 0.026828017 0.318452166 0.120838044 0.169414531 0.173257926 0.222801172
## 637 638 639 640 641 642
## 0.101273549 0.658768789 0.233543084 0.226146393 0.230707453 0.318859144
## 643 644 645 646 647 648
## 0.038435688 0.069872212 0.268518523 0.475927499 0.359882925 0.323566111
## 649 650 651 652 653 654
## 0.257535206 0.323354344 0.037874225 0.110428057 0.831033052 0.005554307
## 655 656 657 658 659 660
## 0.140993643 0.240650519 0.326281983 0.029277700 0.217536103 0.070485633
## 661 662 663 664 665 666
## 0.479853779 0.458481940 0.284647782 0.216185121 0.226008960 0.481217687
## 667 668 669 670 671 672
## 0.285863763 0.076382310 0.332206681 0.051218864 0.211016096 0.523295430
## 673 674 675 676 677 678
## 0.478931551 0.064742328 0.463269627 0.203804549 0.144564429 0.347805419
## 679 680 681 682 683 684
## 0.033800492 0.122371425 0.432489221 0.100233081 0.427423814 0.051138217
## 685 686 687 688 689 690
## 0.227374922 0.075121881 0.014211462 0.300725656 0.324622934 0.189959222
## 691 692 693 694 695 696
## 0.170182248 0.088259511 0.020884342 0.333979991 0.080327197 0.483890844
## 697 698 699 700 701 702
## 0.070015493 0.337670104 0.329418898 0.218457724 0.125389024 0.056362803
## 703 704 705 706 707 708
## 0.336220651 0.038458117 0.089136351 0.085498770 0.230301286 0.828892013
## 709 710 711 712 713 714
## 0.112476335 0.094341056 0.120718667 0.036376628 0.464048955 0.221831067
## 715 716 717 718 719 720
## 0.033206272 0.032319425 0.030358660 0.058913256 0.039613930 0.167130619
## 721 722 723 724 725 726
## 0.606043004 0.053195543 0.035242417 0.035844473 0.032341763 0.170347420
## 727 728 729 730 731 732
## 0.054262222 0.049415316 0.090923744 0.158548317 0.633991260 0.543439003
## 733 734 735 736 737 738
## 0.407758823 0.069279817 0.443806108 0.533181115 0.056534876 0.085309690
## 739 740 741 742 743 744
## 0.281693372 0.246527658 0.712946378 0.294023329 0.755764835 0.105024342
## 745 746 747 748 749 750
## 0.399638106 0.501020616 0.674363521 0.135202639 0.098045984 0.305871970
## 751 752 753 754 755 756
## 0.115929018 0.405346687 0.551206478 0.612377941 0.031628589 0.326594591
## 757 758 759 760 761 762
## 0.377456219 0.330631499 0.159381077 0.334596893 0.179686906 0.742363629
## 763 764 765 766 767 768
## 0.365715210 0.591028167 0.588477648 0.745734821 0.366759878 0.178300375
## 769 770 771 772 773 774
## 0.414277029 0.076776811 0.488512646 0.625853463 0.256224022 0.582235743
## 775 776 777 778 779 780
## 0.034846936 0.380695257 0.071926984 0.367314275 0.153669256 0.019148831
## 781 782 783 784 785 786
## 0.328723052 0.813123221 0.040173158 0.315204773 0.260107957 0.424209249
## 787 788 789 790 791 792
## 0.060748016 0.151868633 0.370331098 0.073188247 0.057434722 0.145799490
## 793 794 795 796 797 798
## 0.335837973 0.283130627 0.237738302 0.260533850 0.110343334 0.742177717
## 799 800 801 802 803 804
## 0.684265422 0.431857084 0.079205673 0.044817758 0.065587900 0.384789708
## 805 806 807 808 809 810
## 0.041091402 0.119510787 0.186451984 0.165081838 0.051921020 0.438893724
## 811 812 813 814 815 816
## 0.347612368 0.047129352 0.083298383 0.030320626 0.321763855 0.302201521
## 817 818 819 820 821 822
## 0.023586505 0.561259549 0.600259607 0.344557205 0.629874897 0.242705973
## 823 824 825 826 827 828
## 0.424233949 0.508661531 0.612887861 0.196396327 0.236367234 0.045620255
## 829 830 831 832 833 834
## 0.012602688 0.141398546 0.110710856 0.069183398 0.438129075 0.022650198
## 835 836 837 838 839 840
## 0.049925431 0.131794865 0.196669135 0.161365087 0.050282248 0.288806747
## 841 842 843 844 845 846
## 0.080891964 0.095468078 0.226314670 0.036909914 0.040524885 0.040150608
## 847 848 849 850 851 852
## 0.511741567 0.285355285 0.692816747 0.776033774 0.575703166 0.160078408
## 853 854 855 856 857 858
## 0.089278787 0.206655363 0.587141339 0.003858551 0.046041354 0.105194453
## 859 860 861 862 863 864
## 0.841622072 0.161418003 0.121475592 0.641842600 0.208692733 0.075879143
## 865 866 867 868 869 870
## 0.330890989 0.130135068 0.623418663 0.116914452 0.024432367 0.699358234
## 871 872 873 874 875 876
## 0.058372744 0.652182399 0.132957604 0.898383168 0.522762163 0.363981977
## 877 878 879 880 881 882
## 0.035900079 0.116165473 0.010028479 0.494732252 0.353468092 0.119439674
## 883 884 885 886 887 888
## 0.089836803 0.049134487 0.632292147 0.323396176 0.773473141 0.040002748
## 889 890 891 892 893 894
## 0.081384168 0.152367774 0.337849963 0.139307417 0.040359416 0.035437002
## 895 896 897 898 899 900
## 0.065139185 0.303995711 0.317831797 0.034995586 0.360646566 0.376460948
## 901 902 903 904 905 906
## 0.089876435 0.133055040 0.765694364 0.004139654 0.028151020 0.170699531
## 907 908 909 910 911 912
## 0.499659498 0.082704585 0.438120267 0.431333724 0.770572068 0.139136708
## 913 914 915 916 917 918
## 0.022395142 0.210853390 0.035359517 0.464086680 0.742413904 0.552673707
## 919 920 921 922 923 924
## 0.188593810 0.345809422 0.226248938 0.091672629 0.097078215 0.090248914
## 925 926 927 928 929 930
## 0.048023039 0.033235926 0.202226614 0.031030874 0.760413241 0.023026256
## 931 932 933 934 935 936
## 0.226961366 0.891272407 0.025253972 0.544515188 0.359672126 0.489942218
## 937 938 939 940 941 942
## 0.132043577 0.317467221 0.352774029 0.335072241 0.735566420 0.077645559
## 943 944 945 946 947 948
## 0.549743996 0.210744098 0.486556952 0.134309464 0.306518915 0.179852166
## 949 950 951 952 953 954
## 0.069328982 0.435942518 0.060746039 0.276735459 0.381546660 0.421131670
## 955 956 957 958 959 960
## 0.047002886 0.463744923 0.231813133 0.272129447 0.306215930 0.031036193
## 961 962 963 964 965 966
## 0.596962772 0.309218017 0.366695604 0.093717614 0.052757966 0.647122405
## 967 968 969 970 971 972
## 0.332434903 0.267892187 0.089341945 0.113365290 0.657519313 0.110805235
## 973 974 975 976 977 978
## 0.040321673 0.509436625 0.011779936 0.265193940 0.289621210 0.101831055
## 979 980 981 982 983 984
## 0.107673367 0.361662775 0.099136944 0.055519787 0.678586803 0.587735635
## 985 986 987 988 989 990
## 0.590779600 0.569014138 0.363579231 0.057841690 0.303769930 0.509302500
## 991 992 993 994 995 996
## 0.129415918 0.010041113 0.199132381 0.090146613 0.378036097 0.275624647
## 997 998 999 1000 1001 1002
## 0.322363845 0.046147872 0.282058959 0.195521559 0.334182516 0.657791082
## 1003 1004 1005 1006 1007 1008
## 0.576239311 0.239583933 0.521356350 0.022413976 0.142949051 0.387861175
## 1009 1010 1011 1012 1013 1014
## 0.349419928 0.091821244 0.445263049 0.105009706 0.095103291 0.026450586
## 1015 1016 1017 1018 1019 1020
## 0.034592345 0.485558935 0.142384948 0.432183106 0.335299585 0.027682379
## 1021 1022 1023 1024 1025 1026
## 0.155537647 0.038733676 0.616643572 0.405670053 0.622102481 0.698546831
## 1027 1028 1029 1030 1031 1032
## 0.550061608 0.049418059 0.221705149 0.020720917 0.088710642 0.057180805
## 1033 1034 1035 1036 1037 1038
## 0.233555560 0.160199561 0.295566512 0.057387234 0.036666930 0.100374649
## 1039 1040 1041 1042 1043 1044
## 0.112078551 0.210539514 0.180495172 0.450803611 0.610551739 0.027691936
## 1045 1046 1047 1048 1049 1050
## 0.740636281 0.037193874 0.322382025 0.456889541 0.555806502 0.338877143
## 1051 1052 1053 1054 1055 1056
## 0.511925034 0.472687566 0.719861382 0.024639540 0.449547153 0.072870200
## 1057 1058 1059 1060 1061 1062
## 0.316939152 0.013997192 0.388475737 0.576869281 0.192337770 0.750222906
## 1063 1064 1065 1066 1067 1068
## 0.443544917 0.069995041 0.088641539 0.181858224 0.104218844 0.219841307
## 1069 1070 1071 1072 1073 1074
## 0.034201389 0.602686657 0.301145594 0.194117433 0.271880918 0.791049447
## 1075 1076 1077 1078 1079 1080
## 0.152622600 0.015916997 0.025168470 0.034323947 0.753939447 0.036937780
## 1081 1082 1083 1084 1085 1086
## 0.614775256 0.570120630 0.070752625 0.345677751 0.540674853 0.895953881
## 1087 1088 1089 1090 1091 1092
## 0.027211407 0.242839056 0.136656439 0.011839904 0.093066873 0.023401477
## 1093 1094 1095 1096 1097 1098
## 0.126208474 0.456590151 0.209490453 0.157291978 0.203945445 0.080827369
## 1099 1100 1101 1102 1103 1104
## 0.440632226 0.819032340 0.016013952 0.107442442 0.409316501 0.421221375
## 1105 1106 1107 1108 1109 1110
## 0.387549343 0.280766565 0.051306936 0.213316199 0.132058970 0.505164408
## 1111 1112 1113 1114 1115 1116
## 0.652844517 0.262100662 0.209162160 0.252823081 0.226522041 0.003772297
## 1117 1118 1119 1120 1121 1122
## 0.305657610 0.872107743 0.468679274 0.125125798 0.442938082 0.557913222
## 1123 1124 1125 1126 1127 1128
## 0.026509946 0.119891686 0.097249890 0.248526824 0.644334646 0.038880324
## 1129 1130 1131 1132 1133 1134
## 0.033817713 0.182490708 0.076027035 0.116201801 0.729703325 0.055030865
## 1135 1136 1137 1138 1139 1140
## 0.459547607 0.042535903 0.096018893 0.139563488 0.067211390 0.234771812
## 1141 1142 1143 1144 1145 1146
## 0.067331441 0.170374685 0.298389571 0.489512843 0.575584337 0.098743508
## 1147 1148 1149 1150 1151 1152
## 0.230889945 0.756625801 0.139804153 0.475558265 0.414192017 0.903084394
## 1153 1154 1155 1156 1157 1158
## 0.156013370 0.309681941 0.770314451 0.182681172 0.057960305 0.179204512
## 1159 1160 1161 1162 1163 1164
## 0.209867701 0.024554312 0.125362339 0.089309947 0.255173516 0.161040268
## 1165 1166 1167 1168 1169 1170
## 0.038627492 0.426443656 0.073682397 0.393513645 0.351976226 0.025736261
## 1171 1172 1173 1174 1175 1176
## 0.608399138 0.420237491 0.515705745 0.616345946 0.076908332 0.097089015
## 1177 1178 1179 1180 1181 1182
## 0.300489254 0.019646516 0.355398297 0.643233743 0.069505699 0.898497426
## 1183 1184 1185 1186 1187 1188
## 0.205650257 0.400107262 0.878163727 0.061621054 0.054014403 0.051366688
## 1189 1190 1191 1192 1193 1194
## 0.231968935 0.205807760 0.343591269 0.094341142 0.022753124 0.624628483
## 1195 1196 1197 1198 1199 1200
## 0.210455788 0.027892643 0.138811275 0.034486548 0.522894535 0.417415840
## 1201 1202 1203 1204 1205 1206
## 0.187874912 0.230789422 0.239525504 0.274150639 0.145266739 0.019948074
## 1207 1208 1209 1210 1211 1212
## 0.603146072 0.142864257 0.185877656 0.422201215 0.032453349 0.281238334
## 1213 1214 1215 1216 1217 1218
## 0.633794746 0.017369033 0.064714830 0.018432794 0.623098718 0.400824107
## 1219 1220 1221 1222 1223 1224
## 0.079380786 0.076567218 0.028298585 0.228773105 0.787065709 0.337369707
## 1225 1226 1227 1228 1229 1230
## 0.744775702 0.020955540 0.029687490 0.063579025 0.351490506 0.593251020
## 1231 1232 1233 1234 1235 1236
## 0.121704747 0.310053166 0.335275541 0.770083074 0.025531384 0.008402415
## 1237 1238 1239 1240 1241 1242
## 0.015931765 0.770989299 0.090175011 0.037578119 0.248565859 0.005281986
## 1243 1244 1245 1246 1247 1248
## 0.018039914 0.239753826 0.198276444 0.773902772 0.388605811 0.007067608
## 1249 1250 1251 1252 1253 1254
## 0.036219578 0.068550195 0.137891942 0.770498787 0.030329421 0.329947845
## 1255 1256 1257 1258 1259 1260
## 0.202694223 0.102455721 0.691130205 0.035659994 0.446674314 0.215827226
## 1261 1262 1263 1264 1265 1266
## 0.226861632 0.300425184 0.024629379 0.763160883 0.060621629 0.304862242
## 1267 1268 1269 1270 1271 1272
## 0.386210834 0.030101411 0.491385089 0.094187355 0.226874416 0.236632653
## 1273 1274 1275 1276 1277 1278
## 0.384850118 0.297653625 0.116905189 0.035884298 0.283518778 0.142624574
## 1279 1280 1281 1282 1283 1284
## 0.197929328 0.070161781 0.691408094 0.346102499 0.243456675 0.381181527
## 1285 1286 1287 1288 1289 1290
## 0.441346033 0.250518122 0.567131505 0.208453376 0.176442708 0.187533053
## 1291 1292 1293 1294 1295 1296
## 0.616349540 0.306207556 0.005691366 0.476711701 0.298040189 0.111479058
## 1297 1298 1299 1300 1301 1302
## 0.323528292 0.178545079 0.650907201 0.409894951 0.050313148 0.077516888
## 1303 1304 1305 1306 1307 1308
## 0.061795863 0.187130755 0.017921509 0.078404486 0.597263843 0.479033329
## 1309 1310 1311 1312 1313 1314
## 0.046423521 0.684301167 0.443096282 0.258551941 0.877558540 0.184289031
## 1315 1316 1317 1318 1319 1320
## 0.036279238 0.027080814 0.240402448 0.019761345 0.068660272 0.839349519
## 1321 1322 1323 1324 1325 1326
## 0.142158015 0.525098993 0.729291531 0.024816040 0.048086589 0.462923757
## 1327 1328 1329 1330 1331 1332
## 0.101640208 0.388452297 0.016976068 0.182402973 0.082977282 0.129805805
## 1333 1334 1335 1336 1337 1338
## 0.051948036 0.073055318 0.415706888 0.245949766 0.165907141 0.025749845
## 1339 1340 1341 1342 1343 1344
## 0.318749900 0.274723353 0.128234402 0.596833041 0.026554784 0.141408765
## 1345 1346 1347 1348 1349 1350
## 0.644585484 0.031636703 0.201963613 0.390475338 0.032966382 0.237441830
## 1351 1352 1353 1354 1355 1356
## 0.152044711 0.593955151 0.156867308 0.333980453 0.030081072 0.008246925
## 1357 1358 1359 1360 1361 1362
## 0.122695386 0.359865231 0.071558620 0.206727534 0.009138727 0.027478635
## 1363 1364 1365 1366 1367 1368
## 0.614796243 0.109861497 0.057616758 0.228957592 0.482116642 0.666791320
## 1369 1370 1371 1372 1373 1374
## 0.311753987 0.532050211 0.242719393 0.057549950 0.018881410 0.200781954
## 1375 1376 1377 1378 1379 1380
## 0.241171670 0.462938177 0.381798729 0.374825509 0.043507577 0.181095660
## 1381 1382 1383 1384 1385 1386
## 0.560219011 0.775277009 0.379799698 0.028948275 0.341578404 0.045776136
## 1387 1388 1389 1390 1391 1392
## 0.059209393 0.061819498 0.035719100 0.356202726 0.753365422 0.565065476
## 1393 1394 1395 1396 1397 1398
## 0.039307519 0.501055494 0.070531199 0.116106445 0.169051792 0.481682051
## 1399 1400 1401 1402 1403 1404
## 0.378163519 0.219218877 0.271340686 0.151520842 0.754637450 0.668352665
## 1405 1406 1407 1408 1409 1410
## 0.349376993 0.272829076 0.097629638 0.206623423 0.061147228 0.646452313
## 1411 1412 1413 1414 1415 1416
## 0.108802740 0.239598085 0.035950370 0.109026745 0.013848626 0.025064192
## 1417 1418 1419 1420 1421 1422
## 0.121247477 0.027800356 0.371779881 0.064260671 0.012369894 0.857677076
## 1423 1424 1425 1426 1427 1428
## 0.490964248 0.074092678 0.335674484 0.881336934 0.025625698 0.145283647
## 1429 1430 1431 1432 1433 1434
## 0.509045811 0.063415906 0.428046788 0.015825871 0.066822142 0.200152097
## 1435 1436 1437 1438 1439 1440
## 0.100875317 0.397780170 0.427032763 0.626023673 0.098454479 0.029987915
## 1441 1442 1443 1444 1445 1446
## 0.056923009 0.792522550 0.452311233 0.066770887 0.184390955 0.592476948
## 1447 1448 1449 1450 1451 1452
## 0.558760737 0.376316958 0.188465866 0.082292773 0.109121110 0.323858723
## 1453 1454 1455 1456 1457 1458
## 0.201132595 0.048342474 0.030177695 0.085354920 0.712937579 0.061765272
## 1459 1460 1461 1462 1463 1464
## 0.095274457 0.061385354 0.009369041 0.154947771 0.018225494 0.435120660
## 1465 1466 1467 1468 1469 1470
## 0.215998473 0.320118278 0.031349946 0.064270063 0.147632551 0.496850004
## 1471 1472 1473 1474 1475 1476
## 0.159113968 0.126111695 0.055593157 0.182393635 0.289693559 0.005797926
## 1477 1478 1479 1480 1481 1482
## 0.562220488 0.235797148 0.093005448 0.052206039 0.413057729 0.008985437
## 1483 1484 1485 1486 1487 1488
## 0.369874526 0.275645632 0.495798681 0.276343345 0.183901871 0.278690511
## 1489 1490 1491 1492 1493 1494
## 0.793806122 0.138080357 0.102755215 0.768491369 0.093140964 0.046145853
## 1495 1496 1497 1498 1499 1500
## 0.729942903 0.350767218 0.129529382 0.025168589 0.015430391 0.051618914
## 1501 1502 1503 1504 1505 1506
## 0.019524758 0.481947763 0.279566874 0.775565597 0.180499836 0.420160615
## 1507 1508 1509 1510 1511 1512
## 0.673121629 0.312234659 0.233249134 0.189392581 0.039279948 0.161060059
## 1513 1514 1515 1516 1517 1518
## 0.056541823 0.253292704 0.388805598 0.450215284 0.031459655 0.526920511
## 1519 1520 1521 1522 1523 1524
## 0.240245047 0.056496174 0.461331588 0.062055964 0.097995753 0.305746470
## 1525 1526 1527 1528 1529 1530
## 0.013746530 0.406128950 0.201726494 0.348883320 0.527010191 0.705632883
## 1531 1532 1533 1534 1535 1536
## 0.397465177 0.475669675 0.034970097 0.043071420 0.451367320 0.385169858
## 1537 1538 1539 1540 1541 1542
## 0.110498291 0.334922889 0.789957597 0.705534992 0.053278182 0.249085447
## 1543 1544 1545 1546 1547 1548
## 0.056113616 0.491416485 0.584066935 0.201730877 0.073189869 0.335378966
## 1549 1550 1551 1552 1553 1554
## 0.101492896 0.146953334 0.286618882 0.121514560 0.096752853 0.745047830
## 1555 1556 1557 1558 1559 1560
## 0.230961864 0.054574285 0.138750905 0.040880149 0.423779269 0.244206231
## 1561 1562 1563 1564 1565 1566
## 0.142075267 0.547861026 0.423764891 0.486731981 0.783977764 0.269557552
## 1567 1568 1569 1570 1571 1572
## 0.136930349 0.228209823 0.213971552 0.482279224 0.548896676 0.077493669
## 1573 1574 1575 1576 1577 1578
## 0.021179723 0.384795464 0.045224010 0.500550340 0.326235912 0.052123165
## 1579 1580 1581 1582 1583 1584
## 0.114367489 0.217454419 0.326160083 0.020610425 0.211855923 0.068801712
## 1585 1586 1587 1588 1589 1590
## 0.087323019 0.042127053 0.028495427 0.387614244 0.017452936 0.336227068
## 1591 1592 1593 1594 1595 1596
## 0.405549637 0.841910496 0.070609616 0.128258254 0.103187829 0.141310760
## 1597 1598 1599 1600 1601 1602
## 0.306716983 0.152247647 0.189230123 0.482030231 0.608444537 0.289815824
## 1603 1604 1605 1606 1607 1608
## 0.291010516 0.624406904 0.261507523 0.824518447 0.016010918 0.054235055
## 1609 1610 1611 1612 1613 1614
## 0.174918250 0.876432956 0.529303320 0.110707234 0.068636229 0.386979598
## 1615 1616 1617 1618 1619 1620
## 0.307076855 0.590434388 0.143898848 0.637754590 0.251111185 0.345806721
## 1621 1622 1623 1624 1625 1626
## 0.711174890 0.026630774 0.614557244 0.189711573 0.231394180 0.282383674
## 1627 1628 1629 1630 1631 1632
## 0.324841928 0.047822626 0.150784686 0.862232210 0.089670397 0.792851764
## 1633 1634 1635 1636 1637 1638
## 0.112363796 0.390914790 0.162308697 0.201488681 0.520654184 0.218990978
## 1639 1640 1641 1642 1643 1644
## 0.246457681 0.365472257 0.041558952 0.236338221 0.166387939 0.137985517
## 1645 1646 1647 1648 1649 1650
## 0.367073719 0.016839076 0.230619698 0.155739917 0.038806447 0.560655174
## 1651 1652 1653 1654 1655 1656
## 0.200453150 0.010501533 0.261507600 0.029289144 0.588752381 0.400079361
## 1657 1658 1659 1660 1661 1662
## 0.003508224 0.059790215 0.159119493 0.085203698 0.578625551 0.694994287
## 1663 1664 1665 1666 1667 1668
## 0.498992011 0.642099201 0.929764336 0.021912866 0.376044437 0.310470085
## 1669 1670 1671 1672 1673 1674
## 0.843604549 0.120616214 0.605950557 0.246461675 0.736907797 0.128946544
## 1675 1676 1677 1678 1679 1680
## 0.037696084 0.262664990 0.044821929 0.060300915 0.181050952 0.284077957
## 1681 1682 1683 1684 1685 1686
## 0.067856172 0.815249832 0.695064638 0.227481118 0.431135684 0.196485745
## 1687 1688 1689 1690 1691 1692
## 0.040295529 0.379931210 0.019259833 0.050139800 0.053192516 0.101959780
## 1693 1694 1695 1696 1697 1698
## 0.056295480 0.558411010 0.331159771 0.738811792 0.152202051 0.606991621
## 1699 1700 1701 1702 1703 1704
## 0.862062797 0.045657567 0.369721358 0.024599706 0.060078717 0.411656284
## 1705 1706 1707 1708 1709 1710
## 0.165512208 0.127492332 0.697528920 0.264318818 0.764411306 0.077644950
## 1711 1712 1713 1714 1715 1716
## 0.321362395 0.009055468 0.517879406 0.230654012 0.341378523 0.030986691
## 1717 1718 1719 1720 1721 1722
## 0.087978359 0.055142048 0.412381993 0.053953333 0.373217842 0.314565822
## 1723 1724 1725 1726 1727 1728
## 0.216468408 0.267176736 0.346435093 0.004472008 0.140844059 0.291896354
## 1729 1730 1731 1732 1733 1734
## 0.758213716 0.372636701 0.426703807 0.048316433 0.026192169 0.369072426
## 1735 1736 1737 1738 1739 1740
## 0.117329392 0.055055193 0.406726877 0.213299240 0.239590644 0.034404140
## 1741 1742 1743 1744 1745 1746
## 0.884315487 0.258111286 0.041953744 0.034181639 0.343556418 0.120101326
## 1747 1748 1749 1750 1751 1752
## 0.206290680 0.242176179 0.552281255 0.228876286 0.217294189 0.262786820
## 1753 1754 1755 1756 1757 1758
## 0.173015048 0.682834790 0.034521187 0.128398895 0.128120153 0.501154631
## 1759 1760 1761 1762 1763 1764
## 0.216840455 0.142472855 0.581875647 0.043053743 0.144545110 0.068749731
## 1765 1766 1767 1768 1769 1770
## 0.286905009 0.686042337 0.043642996 0.310967232 0.094827985 0.115655301
## 1771 1772 1773 1774 1775 1776
## 0.015034035 0.099825113 0.242466057 0.828004836 0.356264338 0.036623087
## 1777 1778 1779 1780 1781 1782
## 0.508499278 0.402655962 0.549889686 0.396472208 0.141155372 0.105331149
## 1783 1784 1785 1786 1787 1788
## 0.280410371 0.284766014 0.256931502 0.103639968 0.193912685 0.019334729
## 1789 1790 1791 1792 1793 1794
## 0.842910986 0.349767575 0.095187787 0.139786456 0.276576710 0.284656509
## 1795 1796 1797 1798 1799 1800
## 0.241539643 0.414400611 0.015944408 0.154382661 0.049790059 0.300016924
## 1801 1802 1803 1804 1805 1806
## 0.477809521 0.191795044 0.118973991 0.203335023 0.114469329 0.401533276
## 1807 1808 1809 1810 1811 1812
## 0.716165030 0.621496369 0.189071189 0.143466831 0.122275629 0.079961368
## 1813 1814 1815 1816 1817 1818
## 0.659254110 0.340112090 0.440955544 0.080962382 0.043248114 0.173571891
## 1819 1820 1821 1822 1823 1824
## 0.197888446 0.354830378 0.036010462 0.150335376 0.036556560 0.275143968
## 1825 1826 1827 1828 1829 1830
## 0.387974142 0.733814993 0.212733929 0.414168455 0.007342766 0.343976305
## 1831 1832 1833 1834 1835 1836
## 0.208786119 0.086754047 0.134773555 0.121753733 0.386393767 0.115820622
## 1837 1838 1839 1840 1841 1842
## 0.134257626 0.855145243 0.057984003 0.735075618 0.054385164 0.043083745
## 1843 1844 1845 1846 1847 1848
## 0.278479835 0.144649461 0.050905372 0.071045709 0.096193898 0.093234220
## 1849 1850 1851 1852 1853 1854
## 0.322403365 0.108557383 0.375342784 0.170437723 0.282269084 0.005228877
## 1855 1856 1857 1858 1859 1860
## 0.015149865 0.312332101 0.045903433 0.239420949 0.127128654 0.039181618
## 1861 1862 1863 1864 1865 1866
## 0.267850144 0.016533247 0.153747393 0.265005216 0.325578237 0.165457080
## 1867 1868 1869 1870 1871 1872
## 0.089221136 0.051491030 0.311088468 0.386587362 0.522326016 0.239759197
## 1873 1874 1875 1876 1877 1878
## 0.042210070 0.049702152 0.273883578 0.157151569 0.023686127 0.749233426
## 1879 1880 1881 1882 1883 1884
## 0.360163407 0.370838472 0.127405716 0.069736282 0.048184522 0.137589005
## 1885 1886 1887 1888 1889 1890
## 0.428414736 0.254875054 0.177728965 0.086501234 0.239962617 0.382129533
## 1891 1892 1893 1894 1895 1896
## 0.055485820 0.315699218 0.024076830 0.018968019 0.321644908 0.189011656
## 1897 1898 1899 1900 1901 1902
## 0.260605371 0.215843251 0.130835481 0.607139305 0.243658186 0.303120052
## 1903 1904 1905 1906 1907 1908
## 0.035906165 0.353553528 0.246580306 0.027630852 0.017454238 0.169344419
## 1909 1910 1911 1912 1913 1914
## 0.318152555 0.829729967 0.489682380 0.389537543 0.063541650 0.201967258
## 1915 1916 1917 1918 1919 1920
## 0.513229967 0.448913408 0.122211257 0.035570874 0.041531384 0.208383971
## 1921 1922 1923 1924 1925 1926
## 0.024021282 0.437068331 0.093289330 0.133430565 0.305190738 0.005592530
## 1927 1928 1929 1930 1931 1932
## 0.233921502 0.128273125 0.012825092 0.146180059 0.008594457 0.207276087
## 1933 1934 1935 1936 1937 1938
## 0.457182503 0.604875567 0.115514174 0.463057152 0.292009660 0.024504818
## 1939 1940 1941 1942 1943 1944
## 0.139621440 0.106373736 0.061180646 0.055808677 0.070300834 0.044908769
## 1945 1946 1947 1948 1949 1950
## 0.014126668 0.321128769 0.560499828 0.072738389 0.776026204 0.047176695
## 1951 1952 1953 1954 1955 1956
## 0.316498845 0.111360326 0.622955496 0.385337793 0.134733822 0.406354160
## 1957 1958 1959 1960 1961 1962
## 0.089871335 0.147009231 0.247385016 0.345164415 0.740166876 0.437236877
## 1963 1964 1965 1966 1967 1968
## 0.321080692 0.303114023 0.175213688 0.039954613 0.146191677 0.422275509
## 1969 1970 1971 1972 1973 1974
## 0.014108499 0.016862333 0.043385801 0.044030977 0.472793977 0.726919510
## 1975 1976 1977 1978 1979 1980
## 0.079903804 0.311653057 0.010124220 0.483061633 0.343050273 0.178862214
## 1981 1982 1983 1984 1985 1986
## 0.119799717 0.480153995 0.147009426 0.072887351 0.118348442 0.231112896
## 1987 1988 1989 1990 1991 1992
## 0.255853970 0.099391195 0.073686028 0.446423179 0.021689790 0.727299017
## 1993 1994 1995 1996 1997 1998
## 0.530482457 0.686827685 0.141121282 0.108097437 0.377969480 0.774248447
## 1999 2000 2001 2002 2003 2004
## 0.430853964 0.080429615 0.585076099 0.424315950 0.659920972 0.014369323
## 2005 2006 2007 2008 2009 2010
## 0.710832146 0.157492907 0.453550001 0.045203410 0.259425654 0.454756625
## 2011 2012 2013 2014 2015 2016
## 0.519510440 0.083021041 0.956562942 0.036320504 0.219551820 0.428507627
## 2017 2018 2019 2020 2021 2022
## 0.052709736 0.702045141 0.479850163 0.051403437 0.023112701 0.244221032
## 2023 2024 2025 2026 2027 2028
## 0.407902427 0.233906041 0.239279682 0.046684386 0.149245993 0.118498770
## 2029 2030 2031 2032 2033 2034
## 0.148964988 0.693097130 0.164761077 0.136735880 0.021541119 0.083429050
## 2035 2036 2037 2038 2039 2040
## 0.715684206 0.417343316 0.222900443 0.073616553 0.590712835 0.106055629
## 2041 2042 2043 2044 2045 2046
## 0.063300090 0.015287553 0.221429473 0.304380428 0.028622721 0.059938090
## 2047 2048 2049 2050 2051 2052
## 0.061641541 0.508476210 0.276811559 0.246952606 0.307671030 0.253288233
## 2053 2054 2055 2056 2057 2058
## 0.324571796 0.048745214 0.595973546 0.032312409 0.302151417 0.289965206
## 2059 2060 2061 2062 2063 2064
## 0.048065187 0.124676279 0.272126464 0.229767965 0.510945015 0.262209700
## 2065 2066 2067 2068 2069 2070
## 0.328470542 0.056102476 0.361370792 0.900103853 0.242140898 0.010913861
## 2071 2072 2073 2074 2075 2076
## 0.100787069 0.272827775 0.497994317 0.399770776 0.024293804 0.084845090
## 2077 2078 2079 2080 2081 2082
## 0.754789509 0.267497164 0.297100536 0.909856246 0.026870860 0.326800018
## 2083 2084 2085 2086 2087 2088
## 0.313917855 0.017532623 0.036482445 0.057267494 0.247020556 0.567100454
## 2089 2090 2091 2092 2093 2094
## 0.092435335 0.584179942 0.140243486 0.033532099 0.518246441 0.145528443
## 2095 2096 2097 2098 2099 2100
## 0.276896994 0.622926011 0.223380926 0.425353066 0.627331206 0.615207441
## 2101 2102 2103 2104 2105 2106
## 0.583628335 0.321794484 0.873797203 0.206011416 0.017588615 0.164696882
## 2107 2108 2109 2110 2111 2112
## 0.643349727 0.010549297 0.302840546 0.020181762 0.822219909 0.079273974
## 2113 2114 2115 2116 2117 2118
## 0.363784719 0.021918573 0.089601566 0.036337290 0.398773373 0.406375297
## 2119 2120 2121 2122 2123 2124
## 0.936460517 0.236022743 0.050502025 0.276100143 0.745655082 0.364432354
## 2125 2126 2127 2128 2129 2130
## 0.294692103 0.035482606 0.349178369 0.135014620 0.051647328 0.029290822
## 2131 2132 2133 2134 2135 2136
## 0.149110402 0.228424242 0.157457850 0.289498238 0.480295578 0.020255491
## 2137 2138 2139 2140 2141
## 0.388166939 0.019378916 0.008136379 0.251677719 0.151363720
## 1 2 3 4 5 6 7 8
## 8.442120 8.413817 8.108086 8.265690 8.628542 8.288995 8.171602 8.550894
## 9 10 11 12 13 14 15 16
## 8.303878 8.588039 8.436331 8.321247 8.219679 8.262980 8.184436 8.407919
## 17 18 19 20 21 22 23 24
## 8.039184 8.434346 8.329897 8.217271 8.386531 8.191449 8.477919 8.265501
## 25 26 27 28 29 30 31 32
## 8.264509 8.176075 8.406725 8.307718 8.269605 8.479700 8.044217 8.395596
## 33 34 35 36 37 38 39 40
## 8.391484 8.408648 8.171587 8.369948 8.411425 8.655197 8.250022 8.207520
## 41 42 43 44 45 46 47 48
## 8.165172 8.206564 8.543948 8.481270 8.170964 8.163152 8.099099 8.371921
## 49 50 51 52 53 54 55 56
## 8.292968 8.162442 8.061492 8.349618 8.292721 8.468445 8.156077 8.455541
## 57 58 59 60 61 62 63 64
## 8.429365 8.406064 8.420683 8.033030 8.198271 8.370326 8.299762 8.428953
## 65 66 67 68 69 70 71 72
## 8.241717 8.003228 8.175617 8.448799 8.425143 8.261650 8.131653 8.354396
## 73 74 75 76 77 78 79 80
## 8.225033 8.037408 8.229033 8.086653 8.271207 8.356562 8.198263 8.088269
## 81 82 83 84 85 86 87 88
## 8.071918 8.414871 8.222916 8.349683 8.193649 8.431012 8.223231 8.237467
## 89 90 91 92 93 94 95 96
## 8.396691 8.230876 8.458848 8.182352 8.157842 8.201782 8.446169 8.353790
## 97 98 99 100 101 102 103 104
## 8.238854 8.367749 8.450125 8.111222 7.993938 8.461493 8.285849 8.385581
## 105 106 107 108 109 110 111 112
## 8.335696 8.283005 8.372012 8.388217 8.304468 8.143748 8.088661 7.995504
## 113 114 115 116 117 118 119 120
## 8.134129 8.192992 8.359862 8.170229 8.052562 8.136205 8.170521 8.139935
## 121 122 123 124 125 126 127 128
## 8.162051 8.127025 8.159292 8.274539 8.202411 8.189439 8.248380 8.175864
## 129 130 131 132 133 134 135 136
## 8.243537 8.273739 8.334646 8.358733 8.082737 8.213041 8.244884 8.274003
## 137 138 139 140 141 142 143 144
## 8.472749 8.542438 8.345194 8.123201 8.173874 8.247292 8.342758 8.241670
## 145 146 147 148 149 150 151 152
## 8.262239 8.211004 8.366780 8.290778 8.630967 8.558921 8.454209 8.309721
## 153 154 155 156 157 158 159 160
## 8.350447 7.915930 8.383876 8.334091 8.388667 8.036281 8.264467 8.333222
## 161 162 163 164 165 166 167 168
## 8.224845 8.218350 8.163088 8.010775 8.438438 8.241233 8.465627 8.195899
## 169 170 171 172 173 174 175 176
## 8.242772 8.516026 8.374774 8.541963 8.458295 8.423995 8.466968 8.063858
## 177 178 179 180 181 182 183 184
## 8.380020 8.208184 8.553606 8.060825 8.373166 8.489985 8.113769 8.476000
## 185 186 187 188 189 190 191 192
## 8.355677 8.163966 8.534584 8.132305 8.467623 8.553382 8.071771 8.189421
## 193 194 195 196 197 198 199 200
## 8.618036 8.132909 8.246273 8.159491 8.320132 8.343788 8.241275 8.319323
## 201 202 203 204 205 206 207 208
## 8.317886 8.130805 8.143054 8.393711 8.131182 8.143191 8.221852 8.576349
## 209 210 211 212 213 214 215 216
## 8.288500 8.401062 8.480467 8.441742 8.337108 8.094620 7.976115 8.396112
## 217 218 219 220 221 222 223 224
## 8.317915 8.171238 8.388710 8.283808 8.534071 8.457596 8.176729 8.202287
## 225 226 227 228 229 230 231 232
## 7.993056 8.372200 8.378670 8.046089 8.345052 8.372243 8.161826 8.478141
## 233 234 235 236 237 238 239 240
## 8.582793 8.396309 8.164002 8.186117 8.505152 8.369984 8.429230 8.290439
## 241 242 243 244 245 246 247 248
## 8.247945 8.392683 8.360097 8.479394 8.203140 8.291977 8.160095 8.240358
## 249 250 251 252 253 254 255 256
## 8.163179 8.377988 8.201629 8.407246 8.201299 8.315134 8.240208 8.443902
## 257 258 259 260 261 262 263 264
## 8.330059 8.276929 8.077205 8.473957 8.193931 8.392059 8.153485 8.414188
## 265 266 267 268 269 270 271 272
## 8.276327 8.308206 8.197738 8.271601 8.379890 8.148743 8.329165 8.427505
## 273 274 275 276 277 278 279 280
## 8.379916 8.377865 8.526452 8.683035 8.483915 8.195808 8.258532 8.265246
## 281 282 283 284 285 286 287 288
## 8.481512 8.625358 8.243285 8.366864 8.173528 8.169869 8.233130 8.189826
## 289 290 291 292 293 294 295 296
## 8.051681 8.093682 8.401481 8.100484 8.095264 8.272931 8.483482 8.119666
## 297 298 299 300 301 302 303 304
## 8.249199 8.337948 8.358950 8.242581 8.342297 8.217824 8.117628 8.656220
## 305 306 307 308 309 310 311 312
## 8.111110 8.160647 8.364138 8.179616 8.205255 8.716190 8.513970 8.115992
## 313 314 315 316 317 318 319 320
## 8.213512 8.363472 8.328859 8.313196 8.100281 8.352306 8.489878 8.180206
## 321 322 323 324 325 326 327 328
## 8.360856 8.092241 8.150722 8.283426 8.246929 8.428547 8.206118 7.856844
## 329 330 331 332 333 334 335 336
## 8.419264 7.715302 8.310110 8.243157 8.283338 8.317809 8.388786 8.211371
## 337 338 339 340 341 342 343 344
## 8.342519 8.151354 8.499873 8.320722 7.974972 8.393442 8.359441 8.283715
## 345 346 347 348 349 350 351 352
## 8.453861 8.138036 8.122515 8.265627 8.230434 8.377442 8.108479 8.609679
## 353 354 355 356 357 358 359 360
## 8.383643 8.343734 8.291526 7.971406 8.289356 8.555942 8.483241 8.282520
## 361 362 363 364 365 366 367 368
## 8.156896 8.253855 8.350581 8.036528 8.302300 8.590014 8.201751 8.005798
## 369 370 371 372 373 374 375 376
## 8.271764 8.221358 8.182463 8.453340 8.400893 8.404710 8.114973 8.336800
## 377 378 379 380 381 382 383 384
## 8.338138 8.690551 8.334915 8.382884 8.555022 8.324236 8.363320 8.074977
## 385 386 387 388 389 390 391 392
## 8.423892 8.423310 8.247598 8.014609 8.356437 7.990071 8.451897 8.199220
## 393 394 395 396 397 398 399 400
## 8.135832 8.516464 8.195824 8.240911 8.247044 8.169117 8.244073 8.178184
## 401 402 403 404 405 406 407 408
## 8.151310 8.072442 8.165283 8.307089 8.271501 8.238529 8.099125 8.599327
## 409 410 411 412 413 414 415 416
## 8.326536 8.206791 8.386412 8.165111 8.451128 8.418013 8.340006 7.913604
## 417 418 419 420 421 422 423 424
## 8.294839 7.948017 8.402885 8.279832 8.190984 8.368823 8.206406 8.469831
## 425 426 427 428 429 430 431 432
## 8.154731 8.018547 8.155570 8.175516 8.272033 8.502657 8.066893 8.518646
## 433 434 435 436 437 438 439 440
## 8.158913 8.133028 8.342121 8.406216 8.212116 8.602398 8.234107 8.275683
## 441 442 443 444 445 446 447 448
## 8.103746 8.181117 8.004424 8.098565 8.132098 8.296125 8.450648 8.490008
## 449 450 451 452 453 454 455 456
## 8.395731 8.413583 8.361406 8.306692 8.362377 8.262157 8.309021 8.487392
## 457 458 459 460 461 462 463 464
## 8.284448 8.441383 8.555505 8.034653 8.273281 8.346187 8.418372 7.931167
## 465 466 467 468 469 470 471 472
## 8.652976 8.406929 8.354940 7.989996 8.142257 8.515211 8.065865 8.200678
## 473 474 475 476 477 478 479 480
## 8.214918 8.133286 8.280937 8.569476 8.367327 8.104574 8.310933 8.043309
## 481 482 483 484 485 486 487 488
## 8.279135 7.842514 8.687988 8.271164 8.079072 8.162994 8.105221 8.328557
## 489 490 491 492 493 494 495 496
## 8.301927 8.340208 8.461111 8.250001 8.313165 8.266612 8.523045 8.226282
## 497 498 499 500 501 502 503 504
## 8.203626 8.302728 8.331046 8.057219 8.315424 8.245018 8.283389 8.304229
## 505 506 507 508 509 510 511 512
## 8.504080 8.268608 8.182741 8.215779 8.435424 8.226907 8.409078 7.812883
## 513 514 515 516 517 518 519 520
## 8.465767 8.126235 8.562946 8.392282 8.438440 8.447297 8.392789 8.331275
## 521 522 523 524 525 526 527 528
## 8.414835 8.625117 8.378739 8.577904 8.316808 8.246068 8.435007 8.485966
## 529 530 531 532 533 534 535 536
## 8.340176 8.268668 8.416272 8.127001 8.449025 8.363024 8.214563 8.214472
## 537 538 539 540 541 542 543 544
## 8.208524 8.071636 8.657991 8.099843 8.351945 8.282258 8.181375 8.255465
## 545 546 547 548 549 550 551 552
## 8.235387 7.939464 8.382544 8.462418 8.419959 8.245936 8.176073 8.294759
## 553 554 555 556 557 558 559 560
## 8.233775 8.342951 8.209070 8.218083 8.157831 8.326853 8.397112 8.086281
## 561 562 563 564 565 566 567 568
## 8.153141 7.874896 8.282127 8.202224 8.030868 8.286363 8.282488 8.171615
## 569 570 571 572 573 574 575 576
## 8.371406 8.483321 8.268570 8.076147 8.412597 8.213434 8.256501 8.222635
## 577 578 579 580 581 582 583 584
## 8.384252 8.333968 7.989710 8.203305 8.196762 8.311309 8.382603 7.802873
## 585 586 587 588 589 590 591 592
## 8.277567 8.227819 8.468988 8.203519 8.278447 8.073511 8.254314 8.152829
## 593 594 595 596 597 598 599 600
## 8.312641 7.930267 8.146673 8.222036 8.354062 8.383633 8.159259 8.005004
## 601 602 603 604 605 606 607 608
## 8.310568 8.373427 8.335861 8.456546 8.410411 8.460639 8.348439 8.180270
## 609 610 611 612 613 614 615 616
## 8.547519 8.542937 8.353209 8.355945 8.292263 8.357962 8.276720 8.375719
## 617 618 619 620 621 622 623 624
## 8.296570 8.181163 8.446844 8.397217 8.274512 8.216298 8.449106 8.335919
## 625 626 627 628 629 630 631 632
## 8.430510 8.554901 8.402391 8.173519 8.320630 8.413154 8.308238 8.173553
## 633 634 635 636 637 638 639 640
## 8.054062 8.403534 8.070455 8.509530 8.520767 8.333222 8.133227 8.227236
## 641 642 643 644 645 646 647 648
## 8.222699 8.581828 8.063369 8.121101 8.338621 8.485625 8.207637 8.400387
## 649 650 651 652 653 654 655 656
## 8.336477 8.522011 8.281778 8.298388 8.211026 8.168889 8.171693 8.059830
## 657 658 659 660 661 662 663 664
## 8.228627 8.417331 8.254097 8.227489 8.146715 7.927031 8.100360 8.527121
## 665 666 667 668 669 670 671 672
## 8.183139 8.259932 8.492575 8.386612 8.130341 8.282576 8.367612 7.849068
## 673 674 675 676 677 678 679 680
## 8.039574 8.159002 8.199271 8.406774 8.436920 8.236301 8.312229 8.417129
## 681 682 683 684 685 686 687 688
## 8.586964 8.364791 8.415254 8.218788 7.847081 8.203346 8.275944 8.227123
## 689 690 691 692 693 694 695 696
## 8.316709 8.711504 8.250355 8.081691 8.403113 8.120244 8.255006 8.388178
## 697 698 699 700 701 702 703 704
## 8.308871 8.463441 8.317588 8.303845 8.298915 8.244216 8.230508 8.149815
## 705 706 707 708 709 710 711 712
## 8.277382 8.669056 8.456737 8.249840 8.443518 8.414405 8.328801 8.077637
## 713 714 715 716 717 718 719 720
## 8.310383 8.305766 8.249148 8.443624 8.253386 8.302346 8.537192 8.135878
## 721 722 723 724 725 726 727 728
## 8.204646 8.168936 8.639300 8.305494 8.298231 8.039028 8.301875 8.283492
## 729 730 731 732 733 734 735 736
## 8.238305 8.133683 7.936857 8.355712 8.297135 8.257236 8.440501 8.236043
## 737 738 739 740 741 742 743 744
## 8.405919 8.344984 7.978364 8.451394 8.332871 7.994164 8.121885 8.622644
## 745 746 747 748 749 750 751 752
## 8.405821 8.336580 8.403131 8.529384 8.336495 8.267977 8.346454 8.238292
## 753 754 755 756 757 758 759 760
## 8.081313 8.310503 7.910847 8.225432 8.305370 8.315171 8.172187 7.999014
## 761 762 763 764 765 766 767 768
## 8.418122 8.377323 8.503883 8.391989 8.105040 8.430246 8.046408 8.467906
## 769 770 771 772 773 774 775 776
## 8.679035 7.997196 8.045437 8.248302 8.587005 8.446414 8.068223 8.309475
## 777 778 779 780 781 782 783 784
## 8.069975 8.367646 8.328116 8.259155 8.149979 8.367138 8.415926 8.518338
## 785 786 787 788 789 790 791 792
## 8.255157 8.439542 8.362421 8.345376 8.141601 8.424330 8.356883 8.269026
## 793 794 795 796 797 798 799 800
## 8.622117 8.420031 8.132448 8.069117 8.180337 7.914137 8.399159 8.270083
## 801 802 803 804 805 806 807 808
## 8.462302 8.275888 8.297171 8.292816 8.289400 8.046815 8.283546 8.317529
## 809 810 811 812 813 814 815 816
## 8.155546 8.258601 8.321821 8.083110 8.449050 7.891677 8.299480 8.131069
## 817 818 819 820 821 822 823 824
## 8.289902 8.264195 8.399009 8.194739 8.215036 8.070135 8.491902 8.114163
## 825 826 827 828 829 830 831 832
## 8.139776 8.374524 8.328490 8.303672 8.334915 8.465811 8.369864 8.209866
## 833 834 835 836 837 838 839 840
## 8.359499 8.063037 8.315717 8.386457 8.435840 8.430543 8.305856 8.002599
## 841 842 843 844 845 846 847 848
## 8.643975 8.295313 8.384064 8.040499 8.330540 8.181361 8.202454 8.512800
## 849 850 851 852 853 854 855 856
## 8.277174 8.433369 8.519493 8.295025 8.464542 8.433275 8.292465 8.222798
## 857 858 859 860 861 862 863 864
## 8.423338 8.438402 8.085342 8.225941 8.217435 8.315005 8.489800 8.388810
## 865 866 867 868 869 870 871 872
## 8.247294 7.955518 8.221446 8.249853 8.209907 8.162619 8.221357 8.425204
## 873 874 875 876 877 878 879 880
## 8.411976 8.249095 7.850661 8.087552 8.315382 8.323066 8.057841 8.164067
## 881 882 883 884 885 886 887 888
## 8.422435 8.460916 8.232349 8.403140 8.275918 8.256506 8.365477 8.202759
## 889 890 891 892 893 894 895 896
## 8.334015 8.253769 8.361765 8.333911 8.412512 8.495761 8.201565 8.363344
## 897 898 899 900 901 902 903 904
## 8.335411 8.260986 8.078406 8.295619 8.225976 8.181564 8.496142 8.159613
## 905 906 907 908 909 910 911 912
## 8.184307 8.486818 8.499243 8.289990 8.236799 8.021160 8.316813 8.400235
## 913 914 915 916 917 918 919 920
## 8.262506 8.111019 8.085936 8.206341 8.526009 8.266125 8.316851 8.261984
## 921 922 923 924 925 926 927 928
## 8.204320 8.489230 8.338983 8.413657 8.534982 8.178997 8.446233 8.436244
## 929 930 931 932 933 934 935 936
## 8.303336 8.331403 8.242912 8.145797 8.618049 8.375949 8.190534 8.195729
## 937 938 939 940 941 942 943 944
## 8.287280 8.390970 8.495207 8.357836 8.305362 8.395505 8.001275 8.490821
## 945 946 947 948 949 950 951 952
## 8.340739 8.590503 8.274314 8.206528 8.129841 8.064670 8.236477 8.310025
## 953 954 955 956 957 958 959 960
## 8.365932 8.343659 8.394916 8.319375 8.366547 8.064236 8.293016 8.393249
## 961 962 963 964 965 966 967 968
## 8.280072 8.240877 8.126219 8.263999 8.369154 8.501273 8.224323 8.319982
## 969 970 971 972 973 974 975 976
## 8.566973 8.292299 8.307226 8.524517 8.285053 8.071610 8.257050 7.971807
## 977 978 979 980 981 982 983 984
## 8.400257 8.347790 8.422862 8.364046 8.233247 8.388554 8.070318 8.225062
## 985 986 987 988 989 990 991 992
## 7.937101 8.265382 8.353245 8.137244 8.287791 8.441273 8.334950 8.345173
## 993 994 995 996 997 998 999 1000
## 8.761466 8.456322 8.253094 7.892164 8.172153 8.323815 8.565058 8.307497
## 1001 1002 1003 1004 1005 1006 1007 1008
## 7.952876 8.390738 8.403161 8.324323 8.318495 8.580362 8.140666 8.097104
## 1009 1010 1011 1012 1013 1014 1015 1016
## 8.257286 8.322509 8.342998 8.630338 8.576217 8.311592 8.504250 8.229104
## 1017 1018 1019 1020 1021 1022 1023 1024
## 8.230515 7.967161 8.078752 8.279943 8.496886 8.255003 8.422117 8.360044
## 1025 1026 1027 1028 1029 1030 1031 1032
## 8.268084 8.130771 8.065040 8.195537 8.172166 7.991230 8.222931 8.101912
## 1033 1034 1035 1036 1037 1038 1039 1040
## 8.333959 8.301915 8.391777 7.951318 8.250202 8.192535 8.648944 8.483366
## 1041 1042 1043 1044 1045 1046 1047 1048
## 8.287603 8.461096 7.911924 8.201297 8.175779 8.255889 8.470474 8.370288
## 1049 1050 1051 1052 1053 1054 1055 1056
## 8.118464 8.466152 8.213717 8.351015 8.048563 8.063434 8.301945 8.444668
## 1057 1058 1059 1060 1061 1062 1063 1064
## 8.180896 8.226220 8.291887 8.342129 8.271963 7.922431 8.298826 8.312201
## 1065 1066 1067 1068 1069 1070 1071 1072
## 8.334488 8.259657 8.687471 8.308462 8.187851 7.978411 8.145736 8.056141
## 1073 1074 1075 1076 1077 1078 1079 1080
## 8.136879 8.309995 8.214074 8.303457 8.450040 8.088802 8.260817 8.287764
## 1081 1082 1083 1084 1085 1086 1087 1088
## 8.482749 8.312886 8.247746 8.138087 7.970741 8.327999 8.342140 8.194766
## 1089 1090 1091 1092 1093 1094 1095 1096
## 8.550251 8.282048 8.566192 8.257888 8.383884 8.300128 8.108020 8.175560
## 1097 1098 1099 1100 1101 1102 1103 1104
## 8.326806 8.318904 8.322649 7.967818 8.327134 8.317462 8.025059 8.173864
## 1105 1106 1107 1108 1109 1110 1111 1112
## 8.629635 8.016314 8.293322 8.323071 8.061770 8.268829 8.144013 8.556877
## 1113 1114 1115 1116 1117 1118 1119 1120
## 8.217017 8.135965 8.092064 8.358997 8.302223 8.370169 8.285376 8.368186
## 1121 1122 1123 1124 1125 1126 1127 1128
## 8.129671 7.972187 7.946415 8.398518 7.844760 8.397292 8.426503 8.358346
## 1129 1130 1131 1132 1133 1134 1135 1136
## 8.370236 8.529532 8.332684 8.405479 8.271671 8.169764 8.245231 8.328619
## 1137 1138 1139 1140 1141 1142 1143 1144
## 8.391462 8.037047 8.369407 8.659132 8.423433 8.311463 8.449156 8.263326
## 1145 1146 1147 1148 1149 1150 1151 1152
## 8.180250 8.449382 8.425590 8.316289 8.168003 8.403280 7.973794 8.170036
## 1153 1154 1155 1156 1157 1158 1159 1160
## 8.562161 8.358814 8.371798 8.246993 8.097579 8.407984 8.069334 8.260077
## 1161 1162 1163 1164 1165 1166 1167 1168
## 8.171715 8.440427 8.135135 8.564599 8.275465 8.459898 8.672262 8.189071
## 1169 1170 1171 1172 1173 1174 1175 1176
## 8.233573 8.184691 8.234469 8.326042 8.306860 8.329439 8.268044 8.140799
## 1177 1178 1179 1180 1181 1182 1183 1184
## 8.122024 8.212372 8.514041 8.382913 8.167595 7.902199 7.926469 8.342161
## 1185 1186 1187 1188 1189 1190 1191 1192
## 8.005597 8.252826 8.054627 8.111963 8.400231 8.218015 8.239911 8.326943
## 1193 1194 1195 1196 1197 1198 1199 1200
## 8.241376 8.049480 8.345576 8.340105 8.123937 8.259047 8.287553 8.375052
## 1201 1202 1203 1204 1205 1206 1207 1208
## 8.453014 8.396413 8.250230 8.121647 8.030898 8.283607 8.055092 8.298265
## 1209 1210 1211 1212 1213 1214 1215 1216
## 8.400066 8.154825 8.101063 8.184402 8.510997 8.476992 8.452878 8.115852
## 1217 1218 1219 1220 1221 1222 1223 1224
## 8.331117 7.895814 8.482344 8.227318 8.253692 8.094283 8.410178 8.416972
## 1225 1226 1227 1228 1229 1230 1231 1232
## 8.222442 8.327432 8.181972 8.384422 8.284678 8.434622 8.330034 8.116302
## 1233 1234 1235 1236 1237 1238 1239 1240
## 8.128073 8.413636 8.649600 8.348530 8.461269 8.324222 8.482901 8.170040
## 1241 1242 1243 1244 1245 1246 1247 1248
## 8.184585 8.320787 8.317578 8.067822 8.217827 8.518800 8.431338 8.188217
## 1249 1250 1251 1252 1253 1254 1255 1256
## 8.372195 8.279696 8.385099 8.225627 8.413134 8.423099 8.284630 8.345347
## 1257 1258 1259 1260 1261 1262 1263 1264
## 8.435602 8.457810 8.391534 8.271727 8.451389 8.431838 8.448623 8.120322
## 1265 1266 1267 1268 1269 1270 1271 1272
## 8.466866 8.321833 8.321103 8.031546 8.168566 8.577083 8.133019 8.440880
## 1273 1274 1275 1276 1277 1278 1279 1280
## 8.443098 8.399027 8.389896 8.498520 8.318671 8.419486 8.256190 8.388173
## 1281 1282 1283 1284 1285 1286 1287 1288
## 8.136714 8.643734 8.426336 8.197008 8.377707 8.285830 8.331989 8.364182
## 1289 1290 1291 1292 1293 1294 1295 1296
## 7.969142 8.166836 8.276399 8.252556 8.586550 8.249963 8.320988 8.247956
## 1297 1298 1299 1300 1301 1302 1303 1304
## 8.165775 8.526421 8.326050 8.479706 8.241122 7.948705 8.447254 8.456124
## 1305 1306 1307 1308 1309 1310 1311 1312
## 8.573223 8.376695 8.565408 8.307409 8.464727 8.216357 8.166439 8.164142
## 1313 1314 1315 1316 1317 1318 1319 1320
## 8.383016 8.468272 8.524938 8.265380 7.938891 8.205594 8.360022 8.214517
## 1321 1322 1323 1324 1325 1326 1327 1328
## 8.311970 8.433755 8.061847 8.225855 8.178519 8.501363 8.499393 8.137200
## 1329 1330 1331 1332 1333 1334 1335 1336
## 8.426594 7.986940 8.298786 8.019419 8.225365 8.244738 8.158523 8.001022
## 1337 1338 1339 1340 1341 1342 1343 1344
## 8.146392 8.153031 7.997362 8.232301 8.241579 8.183893 8.386655 8.309284
## 1345 1346 1347 1348 1349 1350 1351 1352
## 8.460187 8.381471 8.326227 8.313119 8.225455 8.294674 8.324422 8.069205
## 1353 1354 1355 1356 1357 1358 1359 1360
## 8.127775 8.395858 8.051027 8.139036 8.498530 8.486514 8.275274 8.509974
## 1361 1362 1363 1364 1365 1366 1367 1368
## 8.324338 8.384946 8.472737 8.333997 8.619942 8.431494 8.514097 8.082744
## 1369 1370 1371 1372 1373 1374 1375 1376
## 8.388183 8.445950 8.225050 8.499085 8.215585 8.168014 8.376119 8.154334
## 1377 1378 1379 1380 1381 1382 1383 1384
## 8.236660 8.424558 8.567210 8.451263 8.425948 8.184317 8.203935 8.112880
## 1385 1386 1387 1388 1389 1390 1391 1392
## 8.270356 8.342654 8.171538 8.160763 8.415009 8.118406 8.233273 8.254656
## 1393 1394 1395 1396 1397 1398 1399 1400
## 8.279350 8.025574 8.245875 8.513512 8.497731 8.291577 8.351268 8.115546
## 1401 1402 1403 1404 1405 1406 1407 1408
## 8.390796 8.260735 8.259946 8.330323 8.164764 8.500784 8.591482 8.149806
## 1409 1410 1411 1412 1413 1414 1415 1416
## 8.376641 8.267256 8.158181 8.516991 8.256645 8.596944 8.393547 8.216435
## 1417 1418 1419 1420 1421 1422 1423 1424
## 8.200798 8.268934 8.191570 8.329993 8.443328 8.250622 8.122878 8.492934
## 1425 1426 1427 1428 1429 1430 1431 1432
## 8.290446 8.372334 8.097850 8.509772 7.933132 8.612474 8.204151 8.258694
## 1433 1434 1435 1436 1437 1438 1439 1440
## 8.172692 8.003934 8.145473 8.236726 7.898535 8.054071 8.189418 8.016474
## 1441 1442 1443 1444 1445 1446 1447 1448
## 8.173689 8.166991 8.588071 8.387671 8.499920 8.187130 8.544206 8.275031
## 1449 1450 1451 1452 1453 1454 1455 1456
## 8.023413 8.013430 8.366096 8.146484 8.389042 8.188440 8.369061 8.524117
## 1457 1458 1459 1460 1461 1462 1463 1464
## 8.271146 8.412694 8.348552 8.076751 8.188634 8.405856 8.429572 8.148746
## 1465 1466 1467 1468 1469 1470 1471 1472
## 7.987546 8.432874 8.203290 8.504277 8.316424 8.226535 8.321651 8.213248
## 1473 1474 1475 1476 1477 1478 1479 1480
## 8.473662 8.097803 8.355586 8.363366 8.112557 8.147256 8.452407 8.239282
## 1481 1482 1483 1484 1485 1486 1487 1488
## 8.135763 8.341612 7.858113 8.134654 8.291713 8.422183 8.185991 8.096425
## 1489 1490 1491 1492 1493 1494 1495 1496
## 8.319963 8.236320 8.559791 8.291998 8.232095 8.121538 8.322847 8.270819
## 1497 1498 1499 1500 1501 1502 1503 1504
## 8.749013 8.231995 8.576491 8.142383 7.937864 8.240326 8.311052 8.235315
## 1505 1506 1507 1508 1509 1510 1511 1512
## 8.434867 8.325141 8.184981 8.226857 8.376095 8.430044 8.183616 8.272193
## 1513 1514 1515 1516 1517 1518 1519 1520
## 8.316029 8.514505 8.305494 8.361295 8.357965 7.921532 8.139040 8.407587
## 1521 1522 1523 1524 1525 1526 1527 1528
## 8.061895 8.430897 8.596925 8.233725 8.063597 8.094833 8.099556 8.329982
## 1529 1530 1531 1532 1533 1534 1535 1536
## 8.258714 8.230819 8.472792 8.385415 7.978247 8.215172 8.136220 8.075425
## 1537 1538 1539 1540 1541 1542 1543 1544
## 8.292039 8.350229 8.305456 8.383079 8.222997 8.107644 8.497821 8.192293
## 1545 1546 1547 1548 1549 1550 1551 1552
## 8.377348 8.295878 8.203046 8.287524 7.794235 8.271991 8.286859 8.415861
## 1553 1554 1555 1556 1557 1558 1559 1560
## 8.252163 8.173648 8.527850 8.102328 8.617817 8.143548 8.381284 8.371093
## 1561 1562 1563 1564 1565 1566 1567 1568
## 8.359099 8.634369 8.359861 8.259316 8.530253 8.425342 8.101872 8.173716
## 1569 1570 1571 1572 1573 1574 1575 1576
## 8.407559 8.183330 8.215648 8.301993 8.404571 8.469013 8.386264 8.246285
## 1577 1578 1579 1580 1581 1582 1583 1584
## 8.537155 8.321335 8.236058 8.598534 8.511280 8.249209 8.346975 8.203126
## 1585 1586 1587 1588 1589 1590 1591 1592
## 8.288669 8.262001 8.545721 8.075541 8.300852 8.338490 8.024066 8.272519
## 1593 1594 1595 1596 1597 1598 1599 1600
## 8.453880 8.355032 8.355211 8.234172 8.075894 8.470045 8.421360 8.327544
## 1601 1602 1603 1604 1605 1606 1607 1608
## 8.252279 8.343497 8.153626 8.445454 8.353731 8.422137 8.235095 8.382740
## 1609 1610 1611 1612 1613 1614 1615 1616
## 8.657877 8.180694 8.116276 8.445728 8.374196 8.482617 8.430670 8.415549
## 1617 1618 1619 1620 1621 1622 1623 1624
## 7.979735 8.437580 8.432910 8.217986 8.177863 8.291325 8.442741 8.683884
## 1625 1626 1627 1628 1629 1630 1631 1632
## 8.222235 8.317036 8.198039 8.166184 8.273752 8.260892 8.371996 8.303387
## 1633 1634 1635 1636 1637 1638 1639 1640
## 8.180155 8.330798 8.045091 7.855316 8.355158 8.261821 8.096191 8.477148
## 1641 1642 1643 1644 1645 1646 1647 1648
## 8.448879 8.154759 8.381199 8.360564 8.248014 8.306643 8.564628 8.274994
## 1649 1650 1651 1652 1653 1654 1655 1656
## 8.215862 8.081085 8.152412 8.346018 8.464361 8.481328 8.589929 8.443844
## 1657 1658 1659 1660 1661 1662 1663 1664
## 8.244250 8.327105 8.164218 8.200727 8.079890 8.477727 8.147478 8.373004
## 1665 1666 1667 1668 1669 1670 1671 1672
## 8.370199 8.317582 8.198354 8.339641 8.435762 8.297413 8.296661 8.662422
## 1673 1674 1675 1676 1677 1678 1679 1680
## 8.302420 8.402773 8.164556 8.270175 8.551246 8.344329 8.481791 8.512503
## 1681 1682 1683 1684 1685 1686 1687 1688
## 8.367466 8.025068 8.291743 8.211316 8.451153 7.956334 8.360939 8.282550
## 1689 1690 1691 1692 1693 1694 1695 1696
## 8.140394 8.447166 8.251139 8.413405 8.359905 8.314723 8.003779 8.007759
## 1697 1698 1699 1700 1701 1702 1703 1704
## 8.326107 8.232631 8.186809 8.447514 8.420383 8.271639 7.854235 7.753870
## 1705 1706 1707 1708 1709 1710 1711 1712
## 8.551191 8.337311 8.198467 8.410536 8.183523 8.270211 8.195962 8.315664
## 1713 1714 1715 1716 1717 1718 1719 1720
## 8.205897 8.358272 8.423427 8.255033 8.334212 8.359454 8.384444 8.372943
## 1721 1722 1723 1724 1725 1726 1727 1728
## 8.205835 8.125907 8.187883 8.642047 8.452370 8.367172 8.255485 8.270328
## 1729 1730 1731 1732 1733 1734 1735 1736
## 8.319370 8.196403 8.152834 8.260233 8.192620 8.318315 8.306914 8.289652
## 1737 1738 1739 1740 1741 1742 1743 1744
## 8.128238 8.088702 8.664837 8.612842 8.334281 8.241493 8.052998 8.111145
## 1745 1746 1747 1748 1749 1750 1751 1752
## 8.034275 8.527805 8.356994 8.250109 8.226152 8.111761 8.119214 8.356263
## 1753 1754 1755 1756 1757 1758 1759 1760
## 8.330325 8.233888 8.384494 8.299488 8.499103 8.147082 8.182157 8.388226
## 1761 1762 1763 1764 1765 1766 1767 1768
## 8.397463 8.224167 8.161505 8.390926 8.426943 8.339678 8.057255 8.267157
## 1769 1770 1771 1772 1773 1774 1775 1776
## 8.160483 7.651022 8.311352 8.191091 8.262488 8.358052 8.521083 8.461002
## 1777 1778 1779 1780 1781 1782 1783 1784
## 8.126567 8.008440 8.185433 8.382379 8.439678 8.300387 8.356471 7.947472
## 1785 1786 1787 1788 1789 1790 1791 1792
## 8.123678 8.157992 8.420053 8.416564 8.118330 8.608273 8.113671 8.171913
## 1793 1794 1795 1796 1797 1798 1799 1800
## 8.152395 8.073183 8.222892 8.237745 8.165832 8.464624 8.444447 8.237445
## 1801 1802 1803 1804 1805 1806 1807 1808
## 8.358781 8.303277 8.210576 8.501015 8.288386 8.271455 8.237115 8.495128
## 1809 1810 1811 1812 1813 1814 1815 1816
## 8.230744 8.676276 7.835825 8.375199 8.153184 8.166291 7.919814 8.143329
## 1817 1818 1819 1820 1821 1822 1823 1824
## 7.673468 8.045389 8.023725 8.342900 8.313405 8.381983 8.005672 8.162294
## 1825 1826 1827 1828 1829 1830 1831 1832
## 8.250676 8.248220 8.501573 8.455899 8.322421 8.179467 8.221926 8.253130
## 1833 1834 1835 1836 1837 1838 1839 1840
## 8.242329 8.031643 8.230725 8.647855 8.282581 8.344106 8.393080 8.282396
## 1841 1842 1843 1844 1845 1846 1847 1848
## 8.322261 8.050440 8.298432 8.298372 8.351501 8.369730 8.217905 8.183637
## 1849 1850 1851 1852 1853 1854 1855 1856
## 8.229687 8.243474 8.273374 8.264123 8.451607 8.157179 8.360719 8.267917
## 1857 1858 1859 1860 1861 1862 1863 1864
## 8.319393 8.358021 8.313413 8.111862 8.538172 8.210738 8.356075 8.214769
## 1865 1866 1867 1868 1869 1870 1871 1872
## 8.222129 8.320871 8.059519 8.143088 8.410992 8.176613 8.322763 8.071668
## 1873 1874 1875 1876 1877 1878 1879 1880
## 8.118939 8.417147 8.380010 8.126290 8.235456 8.280782 8.217422 8.287325
## 1881 1882 1883 1884 1885 1886 1887 1888
## 8.244740 8.310985 8.286192 8.313833 8.166101 7.946340 8.134085 8.294135
## 1889 1890 1891 1892 1893 1894 1895 1896
## 8.572928 8.486983 8.322565 8.237621 8.113406 8.280847 8.385278 8.288479
## 1897 1898 1899 1900 1901 1902 1903 1904
## 8.014913 8.321268 8.447064 8.129197 8.319951 8.565960 8.129852 8.151686
## 1905 1906 1907 1908 1909 1910 1911 1912
## 8.205461 8.243998 8.347651 8.495374 8.513256 8.322863 8.330551 8.470219
## 1913 1914 1915 1916 1917 1918 1919 1920
## 8.181980 8.474376 8.336262 8.290498 8.355194 8.175370 8.003137 8.250224
## 1921 1922 1923 1924 1925 1926 1927 1928
## 8.310056 7.836223 8.263483 8.228718 8.201268 8.155895 8.204717 8.276099
## 1929 1930 1931 1932 1933 1934 1935 1936
## 8.363075 8.377356 8.324048 8.251812 8.494021 8.324758 8.446124 8.624391
## 1937 1938 1939 1940 1941 1942 1943 1944
## 8.101692 8.330893 8.398208 8.332605 8.558228 8.451000 8.533689 8.452839
## 1945 1946 1947 1948 1949 1950 1951 1952
## 8.243364 8.176569 8.118999 8.638465 7.873113 8.449317 8.330432 8.522261
## 1953 1954 1955 1956 1957 1958 1959 1960
## 8.143632 8.649522 8.549325 8.193212 8.373110 8.208870 8.365094 8.327146
## 1961 1962 1963 1964 1965 1966 1967 1968
## 8.731260 8.426715 8.046672 8.140774 8.547218 8.375814 8.145908 8.386469
## 1969 1970 1971 1972 1973 1974 1975 1976
## 8.154130 8.212092 8.348814 8.190141 8.033757 8.245197 8.181418 8.246053
## 1977 1978 1979 1980 1981 1982 1983 1984
## 8.197785 8.308806 8.015688 8.349505 8.233130 8.272179 8.510216 8.297009
## 1985 1986 1987 1988 1989 1990 1991 1992
## 8.314919 8.468628 8.162179 8.268992 8.364662 8.405194 8.587754 8.158534
## 1993 1994 1995 1996 1997 1998 1999 2000
## 8.297133 8.345976 8.377064 8.394392 8.330813 8.269094 8.270456 7.869482
## 2001 2002 2003 2004 2005 2006 2007 2008
## 8.296432 8.224382 8.213828 8.139623 8.271755 8.099422 8.281575 8.318404
## 2009 2010 2011 2012 2013 2014 2015 2016
## 8.382484 8.192475 8.192298 8.472487 8.005137 8.449761 8.298506 8.278408
## 2017 2018 2019 2020 2021 2022 2023 2024
## 8.364487 8.050071 8.404130 7.938051 8.093303 8.321435 8.026521 8.600993
## 2025 2026 2027 2028 2029 2030 2031 2032
## 8.164185 8.072956 8.360456 8.159844 8.424327 8.044392 7.930539 8.145702
## 2033 2034 2035 2036 2037 2038 2039 2040
## 8.160617 8.241410 8.084658 8.268205 8.185911 8.307027 8.196256 8.070295
## 2041 2042 2043 2044 2045 2046 2047 2048
## 8.171095 8.337354 8.209359 8.286162 8.093596 8.200061 8.155352 8.262199
## 2049 2050 2051 2052 2053 2054 2055 2056
## 8.358958 8.547551 8.450154 8.253426 8.520369 8.214828 8.148896 8.400469
## 2057 2058 2059 2060 2061 2062 2063 2064
## 8.214994 8.262584 7.977899 8.032213 8.005580 7.899202 8.191874 8.227281
## 2065 2066 2067 2068 2069 2070 2071 2072
## 8.195392 8.130359 8.466781 8.056546 8.398504 8.419323 8.304227 8.141521
## 2073 2074 2075 2076 2077 2078 2079 2080
## 8.429472 8.470657 8.228239 8.423899 8.396019 8.291155 8.189779 8.318005
## 2081 2082 2083 2084 2085 2086 2087 2088
## 8.298008 8.255433 8.377997 8.463005 8.122692 8.073760 8.154023 8.174771
## 2089 2090 2091 2092 2093 2094 2095 2096
## 8.203346 8.100470 8.212450 8.451390 8.295330 8.613430 8.411862 8.395786
## 2097 2098 2099 2100 2101 2102 2103 2104
## 8.403575 8.195306 8.470119 8.057317 8.200509 8.006125 8.233552 8.299570
## 2105 2106 2107 2108 2109 2110 2111 2112
## 8.469034 8.124615 8.163779 8.209151 7.957157 8.329668 8.181599 8.296181
## 2113 2114 2115 2116 2117 2118 2119 2120
## 8.285036 8.065796 7.792223 8.308338 8.501817 8.196245 8.172801 8.209087
## 2121 2122 2123 2124 2125 2126 2127 2128
## 8.320886 8.393152 8.237151 8.310704 8.374791 8.461266 7.875772 8.242766
## 2129 2130 2131 2132 2133 2134 2135 2136
## 8.176701 8.181028 8.497813 8.292542 8.345876 8.159982 8.356761 8.343786
## 2137 2138 2139 2140 2141
## 7.865003 8.409831 8.143965 8.363145 8.168010
## 1 2 3 4 5 6
## 6565.498 6719.577 3865.108 5280.465 6737.896 6696.642