library(tidyverse)
data_to_viz <- read_csv("data/data-to-explore.csv")
data_to_viz %>%
select(subject,
section,
time_spent_hours) %>%
mutate(subject = recode(subject,
"AnPhA" = "Anatomy",
"BioA" = "Biology",
"FrScA" = "Forensics",
"OcnA" = "Oceanography",
"PhysA" = "Physics")) %>%
ggplot() +
geom_boxplot(mapping = aes(x = subject, y = time_spent_hours, color = subject), outlier.fill = "white", outlier.stroke = 0.25) +
coord_cartesian(ylim = c(0, 100)) +
labs(title = "Time Spent Distribution for Each Subject",
caption = "Which subject has the highest mean time?") +
theme_bw() +
theme(legend.position = "none")

In the box plot above, the distributions of time spent on each
subject are displayed. Students devote more time on Anatomy. Biology is
the least time consuming subject.
LS0tCnRpdGxlOiAiVGltZSBTcGVudCBmb3IgRWFjaCBTdWJqZWN0IgphdXRob3I6ICJNaW4gWmh1YW5nIgpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksJyVCICVlLCAlWScpYCIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgY29kZV9mb2xkaW5nOiBoaWRlCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KCmxpYnJhcnkodGlkeXZlcnNlKQoKZGF0YV90b192aXogPC0gcmVhZF9jc3YoImRhdGEvZGF0YS10by1leHBsb3JlLmNzdiIpCgpkYXRhX3RvX3ZpeiAgJT4lIAogIHNlbGVjdChzdWJqZWN0LCAKICAgICAgICAgc2VjdGlvbiwgCiAgICAgICAgIHRpbWVfc3BlbnRfaG91cnMpICU+JQogIG11dGF0ZShzdWJqZWN0ID0gcmVjb2RlKHN1YmplY3QsIAogICAgICAgICAgICAgICAgICAgICAgICAgICJBblBoQSIgPSAiQW5hdG9teSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIkJpb0EiID0gIkJpb2xvZ3kiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAiRnJTY0EiID0gIkZvcmVuc2ljcyIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICJPY25BIiA9ICAiT2NlYW5vZ3JhcGh5IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgIlBoeXNBIiA9ICJQaHlzaWNzIikpICU+JQogIGdncGxvdCgpICsKICBnZW9tX2JveHBsb3QobWFwcGluZyA9IGFlcyh4ID0gc3ViamVjdCwgeSA9IHRpbWVfc3BlbnRfaG91cnMsIGNvbG9yID0gc3ViamVjdCksIG91dGxpZXIuZmlsbCA9ICJ3aGl0ZSIsIG91dGxpZXIuc3Ryb2tlID0gMC4yNSkgKwogIGNvb3JkX2NhcnRlc2lhbih5bGltID0gYygwLCAxMDApKSArCiAgbGFicyh0aXRsZSA9ICJUaW1lIFNwZW50IERpc3RyaWJ1dGlvbiBmb3IgRWFjaCBTdWJqZWN0IiwKICAgICAgIGNhcHRpb24gPSAiV2hpY2ggc3ViamVjdCBoYXMgdGhlIGhpZ2hlc3QgbWVhbiB0aW1lPyIpICsKICB0aGVtZV9idygpICsgCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKQoKYGBgCgpJbiB0aGUgYm94IHBsb3QgYWJvdmUsIHRoZSBkaXN0cmlidXRpb25zIG9mIHRpbWUgc3BlbnQgb24gZWFjaCBzdWJqZWN0IGFyZSBkaXNwbGF5ZWQuIFN0dWRlbnRzIGRldm90ZSBtb3JlIHRpbWUgb24gQW5hdG9teS4gQmlvbG9neSBpcyB0aGUgbGVhc3QgdGltZSBjb25zdW1pbmcgc3ViamVjdC4K