The data set klein2000{multilevel} contains 750 observations from 50 groups.
data(klein2000, package = "multilevel")
dta <- klein2000[, -c(3, 4, 7, 8, 9)]
head(dta) GRPID JOBSAT PAY NEGLEAD
1 1 -1.717411 0.510543 0.3127974
2 1 0.237316 -1.967199 -1.9046836
3 1 -2.097958 -2.748838 -0.1243344
4 1 2.932552 1.355283 -1.2983974
5 1 0.144981 -1.185332 0.0646287
6 1 -1.995481 -0.399117 0.3870573
Column 1: GRPID ~ numeric Group Identifier
Column 2: JOBSAT ~
numeric Job Satisfaction (DV)
Column 3: PAY - numeric Pay
Column
4: NEGLEAD - numeric Negative Leadership
# 計算變數
dta %>%
mutate(NEGLEAD_mt = mean(NEGLEAD))%>%
group_by(GRPID) %>%
mutate(mneglead=mean(NEGLEAD), NEGLEAD_mgc=mean(NEGLEAD) - NEGLEAD_mt,
mpay=mean(PAY), PAY_c=PAY - mean(PAY)) -> dtam0 <- lme4::lmer(JOBSAT ~ (1 | GRPID), data=dta)
m1 <- lme4::lmer(JOBSAT ~ PAY_c + (1 | GRPID), data=dta)
sjPlot::tab_model(m0, m1, show.p=FALSE, show.r2=FALSE, show.obs=FALSE, show.ngroups=FALSE, show.se=TRUE, show.ci=FALSE)| JOBSAT | JOBSAT | |||
|---|---|---|---|---|
| Predictors | Estimates | std. Error | Estimates | std. Error |
| (Intercept) | 0.08 | 0.14 | 0.08 | 0.14 |
| PAY c | 0.97 | 0.08 | ||
| Random Effects | ||||
| σ2 | 5.47 | 4.51 | ||
| τ00 | 0.68 GRPID | 0.75 GRPID | ||
| ICC | 0.11 | 0.14 | ||
結果顯示:
m2 <- lme4::lmer(JOBSAT ~ NEGLEAD_mgc + (1 | GRPID), data=dta)
sjPlot::tab_model(m0, m2, show.p=FALSE, show.r2=FALSE, show.obs=FALSE, show.ngroups=FALSE, show.se=TRUE, show.ci=FALSE)| JOBSAT | JOBSAT | |||
|---|---|---|---|---|
| Predictors | Estimates | std. Error | Estimates | std. Error |
| (Intercept) | 0.08 | 0.14 | 0.08 | 0.12 |
| NEGLEAD mgc | -1.78 | 0.34 | ||
| Random Effects | ||||
| σ2 | 5.47 | 5.47 | ||
| τ00 | 0.68 GRPID | 0.31 GRPID | ||
| ICC | 0.11 | 0.05 | ||
結果顯示: