1 Introduction

  • Understand the meaning of predictors at different levels
  • as well as the effect of the centering the teacher level
  • predictor against the respective school-level means in a
  • school-teacher-pupil three-level example

2 Data Management

# input data
dta <- read.csv("pts.csv")
head(dta)
  School Teacher Pupil      Read_0 Read_1
1      1      11    18 -0.16407000 4.2426
2      1      11    19 -0.98126000 1.0000
3      1      11    20 -1.25370000 2.2361
4      1      11    15 -0.87230000 3.1623
5      1      11    17 -0.00063104 3.4641
6      1      11    16 -0.92678000 4.0000

Column 1: School ID (1-35)
Column 2: Teacher ID (11-352)
Column 3: Pupil ID (1-1948)
Column 4: Reading attainment at the end of reception (mean = 0, SD = 1)
Column 5: Reading attainment at the end of year one

# coerce variables to factor type and compute mean Read_0 by school
dta <- dta %>%
  mutate(School = factor(School), Teacher = factor(Teacher),
         Pupil = factor(Pupil)) %>%
  group_by( School ) %>%
  mutate(msRead_0 = mean(Read_0))

# compute mean Read_0 by teacher and
# centered teacher mean of Read_0 (from respective school means)
dta <- dta %>%
  group_by( Teacher ) %>%
  mutate(mtRead_0 = mean(Read_0), ctRead_0 = mean(Read_0) - msRead_0 )

3 Models

3.1 no predictor

# DV: read_1; random intercept: School, Teacher
summary(m0 <- lmer(Read_1 ~  (1 | School) + (1 | Teacher), data = dta))
Linear mixed model fit by REML ['lmerMod']
Formula: Read_1 ~ (1 | School) + (1 | Teacher)
   Data: dta

REML criterion at convergence: 2486.8

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-3.054 -0.657  0.065  0.625  2.472 

Random effects:
 Groups   Name        Variance Std.Dev.
 Teacher  (Intercept) 0.137    0.370   
 School   (Intercept) 0.128    0.357   
 Residual             1.325    1.151   
Number of obs: 777, groups:  Teacher, 46; School, 20

Fixed effects:
            Estimate Std. Error t value
(Intercept)    3.375      0.107    31.7

結果顯示:

  • 學生在小學一年級學期結束後的閱讀能力平均估計值為3.375(以學生、學校及老師層級計算,SD分別為1.2608 [sqrt(1.325+0.137+0.1277)], 0.3574, 0.3701)。
  • 學校層級差異可以解釋學生間閱讀能力變異的8.03% [0.1277/(1.325+0.137+0.1277)]
  • 老師層級差異可以解釋學生間閱讀能力變異的8.62% [0.1370/(1.325+0.137+0.1277)]

3.2 add a school-level predictor

# add IV: msRead_0
summary(m0_s <- update(m0, . ~ . + msRead_0))
Linear mixed model fit by REML ['lmerMod']
Formula: Read_1 ~ (1 | School) + (1 | Teacher) + msRead_0
   Data: dta

REML criterion at convergence: 2467.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.0611 -0.6560  0.0682  0.6277  2.4539 

Random effects:
 Groups   Name        Variance Std.Dev.
 Teacher  (Intercept) 0.123    0.351   
 School   (Intercept) 0.000    0.000   
 Residual             1.322    1.150   
Number of obs: 777, groups:  Teacher, 46; School, 20

Fixed effects:
            Estimate Std. Error t value
(Intercept)   3.3982     0.0681   49.92
msRead_0      1.0016     0.1781    5.62

Correlation of Fixed Effects:
         (Intr)
msRead_0 0.086 
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')

結果顯示:

  • 學生在小學一年級學期結束後的閱讀能力平均估計值為3.398,學生平均閱讀能力(學校層級)每增加1單位,可以提升學生在小學一年級學期結束後的閱讀能力1.002單位。
  • 加入平均閱讀能力(學校層級)做為獨變項後,學校層級差異可以解釋學生間閱讀能力變異為0%,老師層級差異可以解釋學生間閱讀能力變異的8.54% [0.1234/(1.3224+0.1234)]

3.3 add a teacher-level predictor

# add IV: mtRead_0
summary(m0_t <- update(m0, . ~ . + mtRead_0))
Linear mixed model fit by REML ['lmerMod']
Formula: Read_1 ~ (1 | School) + (1 | Teacher) + mtRead_0
   Data: dta

REML criterion at convergence: 2434.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.0754 -0.6598  0.0671  0.6326  2.4997 

Random effects:
 Groups   Name        Variance Std.Dev.
 Teacher  (Intercept) 3.30e-15 5.74e-08
 School   (Intercept) 4.47e-02 2.11e-01
 Residual             1.31e+00 1.14e+00
Number of obs: 777, groups:  Teacher, 46; School, 20

Fixed effects:
            Estimate Std. Error t value
(Intercept)   3.4065     0.0631   54.01
mtRead_0      1.0732     0.1149    9.34

Correlation of Fixed Effects:
         (Intr)
mtRead_0 0.024 
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
sjPlot::tab_model(m0_t, show.p=FALSE, show.r2=FALSE)
  Read_1
Predictors Estimates CI
(Intercept) 3.41 3.28 – 3.53
mtRead 0 1.07 0.85 – 1.30
Random Effects
σ2 1.31
τ00 Teacher 0.00
τ00 School 0.04
N School 20
N Teacher 46
Observations 777

結果顯示:

  • 學生在小學一年級學期結束後的閱讀能力平均估計值為3.406,學生平均閱讀能力(老師層級)每增加1單位,可以提升學生在小學一年級學期結束後的閱讀能力1.073單位。
  • 加入平均閱讀能力(老師層級)做為獨變項後,學校層級差異可以解釋學生間閱讀能力變異的3.30% [0.04471/(0.0447+3.30e-15+1.309)],老師層級差異可以解釋學生間閱讀能力變異的0%。

3.4 add a teacher-level predictor away from respective school means

# add IV: ctRead_0
summary(m0_ct <- update(m0, . ~ . + ctRead_0))
Linear mixed model fit by REML ['lmerMod']
Formula: Read_1 ~ (1 | School) + (1 | Teacher) + ctRead_0
   Data: dta

REML criterion at convergence: 2454.1

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-3.180 -0.646  0.079  0.642  2.527 

Random effects:
 Groups   Name        Variance Std.Dev.
 Teacher  (Intercept) 2.46e-10 1.57e-05
 School   (Intercept) 1.76e-01 4.20e-01
 Residual             1.31e+00 1.14e+00
Number of obs: 777, groups:  Teacher, 46; School, 20

Fixed effects:
            Estimate Std. Error t value
(Intercept)    3.390      0.103   32.93
ctRead_0       1.174      0.158    7.43

Correlation of Fixed Effects:
         (Intr)
ctRead_0 0.000 
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')

結果顯示:

  • 學生在小學一年級學期結束後的閱讀能力平均估計值為3.390,學生平均閱讀能力(老師層級)每高於學生平均閱讀能力(學校層級)1單位,可以提升學生在小學一年級學期結束後的閱讀能力1.174單位。
  • 加入平均閱讀能力差異(即老師層級與學校層級平均分數之差異)做為獨變項後,學校層級差異可以解釋學生間閱讀能力變異的11.86% [0.1764/(0.1764+2.46e-10+1.311)],老師層級差異可以解釋學生間閱讀能力變異的0%。