install.packages("multilevel",repos = "http://cran.us.r-project.org")
## 將程式套件安載入 'C:/Users/a0905/AppData/Local/R/win-library/4.2'
## (因為 'lib' 沒有被指定)
## 程式套件 'multilevel' 開啟成功,MD5 和檢查也透過
##
## 下載的二進位程式套件在
## C:\Users\a0905\AppData\Local\Temp\RtmpEZL6YQ\downloaded_packages 裡
## 載入需要的套件:nlme
## 載入需要的套件:MASS
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::collapse() masks nlme::collapse()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::select() masks MASS::select()
data(multilevel, "klein2000")
## Warning in data(multilevel, "klein2000"): 沒有 'multilevel' 這個資料集
klein2000 %>% group_by(GRPID) %>% mutate(mneglead=mean(NEGLEAD)) -> dta
summary(m1 <- lme4::lmer(JOBSAT ~ ( PAY | GRPID ), data = dta ))
## Linear mixed model fit by REML ['lmerMod']
## Formula: JOBSAT ~ (PAY | GRPID)
## Data: dta
##
## REML criterion at convergence: 3381
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9050 -0.6367 -0.0033 0.6236 3.8665
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## GRPID (Intercept) 0.8385 0.9157
## PAY 1.0682 1.0335 -0.35
## Residual 4.4165 2.1016
## Number of obs: 750, groups: GRPID, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.2806 0.1456 1.927
sjPlot::tab_model(m1, show.p=FALSE, show.r2=FALSE)
|
|
JOBSAT
|
|
Predictors
|
Estimates
|
CI
|
|
(Intercept)
|
0.28
|
-0.01 – 0.57
|
|
Random Effects
|
|
σ2
|
4.42
|
|
τ00 GRPID
|
0.84
|
|
τ11 GRPID.PAY
|
1.07
|
|
ρ01 GRPID
|
-0.35
|
|
ICC
|
0.16
|
|
N GRPID
|
50
|
|
Observations
|
750
|
summary(m2 <- lme4::lmer(JOBSAT ~ mneglead + (1 | GRPID ), data = dta))
## Linear mixed model fit by REML ['lmerMod']
## Formula: JOBSAT ~ mneglead + (1 | GRPID)
## Data: dta
##
## REML criterion at convergence: 3435.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9638 -0.6472 -0.0214 0.6892 3.6020
##
## Random effects:
## Groups Name Variance Std.Dev.
## GRPID (Intercept) 0.3128 0.5593
## Residual 5.4741 2.3397
## Number of obs: 750, groups: GRPID, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.08414 0.11643 0.723
## mneglead -1.77696 0.33701 -5.273
##
## Correlation of Fixed Effects:
## (Intr)
## mneglead -0.012
sjPlot::tab_model(m2, show.p=FALSE, show.r2=FALSE)
|
|
JOBSAT
|
|
Predictors
|
Estimates
|
CI
|
|
(Intercept)
|
0.08
|
-0.14 – 0.31
|
|
mneglead
|
-1.78
|
-2.44 – -1.12
|
|
Random Effects
|
|
σ2
|
5.47
|
|
τ00 GRPID
|
0.31
|
|
ICC
|
0.05
|
|
N GRPID
|
50
|
|
Observations
|
750
|
## refitting model(s) with ML (instead of REML)
## Data: dta
## Models:
## m2: JOBSAT ~ mneglead + (1 | GRPID)
## m1: JOBSAT ~ (PAY | GRPID)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m2 4 3440.3 3458.8 -1716.2 3432.3
## m1 5 3389.0 3412.1 -1689.5 3379.0 53.386 1 2.741e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1