2.計算結果
#資料整理
dta_pay <- dta %>%
group_by(GRPID) %>%
mutate(mneglead=mean(PAY))
#計算工作滿意度的多少差異可以歸因於屬於同一群體的個人之間的薪酬差異
m1 <- lme4::lmer(JOBSAT ~ (PAY | GRPID), data=dta)
summary(m1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: JOBSAT ~ (PAY | GRPID)
## Data: dta
##
## REML criterion at convergence: 3381
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9050 -0.6367 -0.0033 0.6236 3.8665
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## GRPID (Intercept) 0.8385 0.9157
## PAY 1.0682 1.0335 -0.35
## Residual 4.4165 2.1016
## Number of obs: 750, groups: GRPID, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.2806 0.1456 1.927
sjPlot::tab_model(m1, show.p=FALSE, show.r2=FALSE)
|
|
JOBSAT
|
|
Predictors
|
Estimates
|
CI
|
|
(Intercept)
|
0.28
|
-0.01 – 0.57
|
|
Random Effects
|
|
σ2
|
4.42
|
|
τ00 GRPID
|
0.84
|
|
τ11 GRPID.PAY
|
1.07
|
|
ρ01 GRPID
|
-0.35
|
|
ICC
|
0.16
|
|
N GRPID
|
50
|
|
Observations
|
750
|
#圖2.1
ggplot(dta_pay, aes(JOBSAT, PAY, group= GRPID)) +
geom_point(alpha=.2)+
geom_line(alpha= .2) +
stat_smooth(aes(group= GRPID), method="lm", formula=y~x, se=FALSE,
size=rel(.5))+
stat_smooth(aes(x=JOBSAT, y=PAY,
group=1),
method="lm", formula=y~x,
se=FALSE, size=rel(.5), col= "red")+
labs(x="Job Satisfaction)",
y="Pay")+
theme_minimal()

#資料整理
dta_NEGL <- klein2000 %>%
group_by(GRPID) %>%
mutate(mneglead=mean(NEGLEAD))
#計算組間工作滿意度的差異有多大可歸因於組間(組級)消極領導的差異
m2 <- lme4::lmer(JOBSAT ~ (NEGLEAD | GRPID), data=dta)
summary(m2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: JOBSAT ~ (NEGLEAD | GRPID)
## Data: dta
##
## REML criterion at convergence: 3431.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8616 -0.6544 -0.0075 0.6254 3.2700
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## GRPID (Intercept) 0.5517 0.7428
## NEGLEAD 0.4205 0.6484 -0.21
## Residual 5.0311 2.2430
## Number of obs: 750, groups: GRPID, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.004284 0.133794 0.032
sjPlot::tab_model(m2, show.p=FALSE, show.r2=FALSE)
|
|
JOBSAT
|
|
Predictors
|
Estimates
|
CI
|
|
(Intercept)
|
0.00
|
-0.26 – 0.27
|
|
Random Effects
|
|
σ2
|
5.03
|
|
τ00 GRPID
|
0.55
|
|
τ11 GRPID.NEGLEAD
|
0.42
|
|
ρ01 GRPID
|
-0.21
|
|
ICC
|
0.10
|
|
N GRPID
|
50
|
|
Observations
|
750
|
#圖2.2
ggplot(dta_NEGL, aes(JOBSAT, NEGLEAD, group= GRPID)) +
geom_point(alpha=.2)+
geom_line(alpha= .2) +
stat_smooth(aes(group= GRPID), method="lm", formula=y~x, se=FALSE,
size=rel(.5))+
stat_smooth(aes(x=JOBSAT, y=NEGLEAD,
group=1),
method="lm", formula=y~x,
se=FALSE, size=rel(.5), col= "red")+
labs(x="Job Satisfaction)",
y="Negative Leadership")+
theme_minimal()
