Concept of study

Theoretical concept for study

data_clean <- read_sav("C:/Users/binht/Dropbox/Hue/data/2022_data_consultant/01 DD 1/data_clean.sav")
  1. There are some specific variables using in this analysis
names(data_clean)
  [1] "ID"                                   "C1.Name"                              "C2.Medical_record_code"              
  [4] "C3.Gender"                            "C4.1Address"                          "C4.2Phone_number"                    
  [7] "C5.Age"                               "NHOMTUOI"                             "C6.Education_level"                  
 [10] "C7.Occupation"                        "C8.Living_with"                       "C9.1Caregiver_myself"                
 [13] "C9.2Caregiver_spouse"                 "C9.3.Caregiver_children"              "C10.1First_year_diagnosis"           
 [16] "C10.2Number_of_year_disease"          "PHANLOAINAMMACBENH"                   "C11.Comobidity"                      
 [19] "C11.1What_comobidity"                 "C11.TANGHUYETAP"                      "C11SUYTIM"                           
 [22] "C11VIEMDADAY"                         "C11DTD"                               "C11KHAC"                             
 [25] "C12.1.metered_dose_inhaler"           "C12.2.Turberhaler"                    "C12.3.Accuhaler"                     
 [28] "C13.Number_year_use_medicine"         "C14.Received_instruction"             "Phanloainamdungthuoc"                
 [31] "C15.1.Instructors_health_care_worker" "C15.2.Instructors_radio_television"   "C15.3.Instructors_Internet"          
 [34] "C15.4.Instructors_reading_guideline"  "C15.5.Instructors_Poster"             "C15.5.Instructors_Another_person"    
 [37] "C15.5.Instructors_other"              "C16.Smoking_past"                     "C17.Smoking_present"                 
 [40] "sogoi"                                "phanloai"                             "solannhapvien"                       
 [43] "phanloaisolannhapvien"                "sodotcap"                             "phanloaidotcap"                      
 [46] "Mucdotacnghen"                        "II.Knowledge.1"                       "II.2"                                
 [49] "II.3"                                 "II.4"                                 "II.5"                                
 [52] "II.6"                                 "II.7"                                 "II.8"                                
 [55] "II.9"                                 "II.10"                                "II.11"                               
 [58] "II.12"                                "II.13"                                "TONG_KIENTHUCCHUNG"                  
 [61] "III.1"                                "III.2"                                "III.3"                               
 [64] "III.4"                                "III.5"                                "III.6"                               
 [67] "III.7"                                "III.8"                                "III.9"                               
 [70] "III.10"                               "III.11"                               "III.12"                              
 [73] "III.13"                               "TONG_LYTHUYET"                        "TONGYDINH"                           
 [76] "TONGATB"                              "TONGSN"                               "TONGPBC"                             
 [79] "IV.1.1"                               "IV.1.2"                               "IV.1.3"                              
 [82] "IV.1.4"                               "IV.1.5"                               "IV.1.6"                              
 [85] "IV.2.1"                               "IV.2.2"                               "IV.2.3"                              
 [88] "IV.2.4"                               "IV.2.5"                               "IV.2.6"                              
 [91] "IV.3.1"                               "IV.3.2"                               "IV.3.3"                              
 [94] "IV.3.4"                               "IV.3.5"                               "IV.3.6"                              
 [97] "DIEMTHUCHANH"                         "PL_THUCHANH"                          "V.1.MMAS8"                           
[100] "V.2"                                  "V.3"                                  "V.4"                                 
[103] "V.5"                                  "V.6"                                  "V.7"                                 
[106] "V.8"                                  "TONGMMAS8"                            "PL_MMAS8"                            
[109] "VI.1TAI"                              "VI.2"                                 "VI.3"                                
[112] "VI.4"                                 "VI.5"                                 "VI.6"                                
[115] "VI.7"                                 "VI.8"                                 "VI.9"                                
[118] "VI.10"                                "TONGTAI10ITEMS"                       "phantai3new"                         
[121] "VI.11"                                "VI.12"                                "TONGTAI15"                           
[124] "PHANLAOI15"                           "TONGTAI610"                           "PHANLOAI610"                         
[127] "TONGTAI1112"                          "PHANLOAI1112"                         "PL_TAI3GROUP"                        
[130] "TONGmMRC"                             "PHANLOAIMmrc"                         "CAT1"                                
[133] "CAT2"                                 "CAT3"                                 "CAT4"                                
[136] "CAT5"                                 "CAT6"                                 "CAT7"                                
[139] "CAT8"                                 "TONGCAT"                              "PHANCAT"                             
[142] "MMASgroup2"                           "TAI2group"                            "TUANTHUKHAM"                         

1.1. Personal factors:

+ Current smoking: STT 39 C17.Smoking_present

+ Knowledge : STT: 60 TONG_KIENTHUCCHUNG

+ Smoking technique STT: 98 PL_THUCHANH

1.2. Independent variables

Covars 1: Social Supportive: STT 12,13,1,4 C9.1Caregiver_myself; C9.2Caregiver_spouse; C9.3.Caregiver_children

Covars 2: mMRC: 130 TONGCAT

CAT: STT 140 PHANLOAIMmrc

Group 1: TONGYDINH ; TONGATB ; TONGSN

1.3. Mediators: Intention : 74  TONG_LYTHUYET

1.4. Outcome Treatment adherence : Tuân thủ điều trị:143 TAI2group

data <- subset(data_clean, select = c("C9.1Caregiver_myself", "C9.2Caregiver_spouse", "C9.3.Caregiver_children","TONG_LYTHUYET", "C17.Smoking_present", "TONG_KIENTHUCCHUNG", "PL_THUCHANH", "TONGmMRC", "TONGCAT", 'TONGYDINH',"TONGATB" , "TONGSN", "TAI2group"))

Define the variables

  1. Descriptive results
 library(compareGroups)
t1=compareGroups(TAI2group~C17.Smoking_present+TONG_KIENTHUCCHUNG+PL_THUCHANH++ C9.1Caregiver_myself+C9.2Caregiver_spouse+C9.3.Caregiver_children+TONGmMRC+TONGYDINH+TONGATB+TONGSN+TONG_LYTHUYET, data=data)
Warning: Chi-squared approximation may be incorrect

Table 1. Distribution for selected variables and associations with outcome

createTable(t1)

--------Summary descriptives table by '01'---------

__________________________________________________________ 
                              0           1      p.overall 
                            N=265       N=155              
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
C17.Smoking_present:                               0.048   
    Yes                  139 (52.5%) 65 (41.9%)            
    No                   126 (47.5%) 90 (58.1%)            
TONG_KIENTHUCCHUNG       9.30 (3.43) 10.7 (2.62)  <0.001   
PL_THUCHANH:                                      <0.001   
    Chua thuc hanh dung  195 (73.6%) 73 (47.1%)            
    Thuc hanh dung       70 (26.4%)  82 (52.9%)            
C9.1Caregiver_myself:                              0.245   
    yes                  259 (97.7%) 148 (95.5%)           
    no                    6 (2.26%)   7 (4.52%)            
C9.2Caregiver_spouse:                              0.047   
    yes                  195 (73.6%) 99 (63.9%)            
    no                   70 (26.4%)  56 (36.1%)            
C9.3.Caregiver_children:                           0.085   
    yes                  22 (8.33%)  22 (14.2%)            
    no                   242 (91.7%) 133 (85.8%)           
TONGmMRC                 2.68 (0.58) 2.45 (0.67)  <0.001   
C17.Smoking_present:                               0.048   
    Yes                  139 (52.5%) 65 (41.9%)            
    No                   126 (47.5%) 90 (58.1%)            
TONGYDINH                2.26 (0.45) 4.23 (0.51)  <0.001   
TONGATB                  7.06 (1.54) 14.5 (1.17)  <0.001   
TONGSN                   11.4 (2.49) 29.3 (2.49)  <0.001   
TONG_LYTHUYET            27.8 (5.73) 62.4 (4.78)  <0.001   
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
  1. Model Model 1 (mediator ~ indepent+covariates)

    Model 2 (Ourcome ~ all)

model.m <- lm(TONG_LYTHUYET ~ C17.Smoking_present+TONG_KIENTHUCCHUNG+PL_THUCHANH++ C9.1Caregiver_myself+C9.2Caregiver_spouse+C9.3.Caregiver_children+TONGmMRC+TONGYDINH+TONGATB+TONGSN, data = data)

model.y <- glm(TAI2group ~ TONG_LYTHUYET + C17.Smoking_present+TONG_KIENTHUCCHUNG+PL_THUCHANH++ C9.1Caregiver_myself+C9.2Caregiver_spouse+C9.3.Caregiver_children+TONGmMRC+TONGYDINH+TONGATB+TONGSN, data = data, family="binomial")


out.1 <- mediate(model.m, model.y, sims = 1000, boot = TRUE, treat = "C9.2Caregiver_spouse",
                 mediator = "TONG_LYTHUYET")
out.2 <- mediate(model.m, model.y, sims = 1000, treat = "C9.2Caregiver_spouse",
                 mediator = "TONG_LYTHUYET")
summary(out.1)
summary(out.2)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBkZl9wcmludDogcGFnZWQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KQ29uY2VwdCBvZiBzdHVkeQ0KDQohWyoqVGhlb3JldGljYWwgY29uY2VwdCBmb3Igc3R1ZHkqKl0oZmlnMS5wbmcpDQoNCmBgYHtyfQ0KZGF0YV9jbGVhbiA8LSByZWFkX3NhdigiQzovVXNlcnMvYmluaHQvRHJvcGJveC9IdWUvZGF0YS8yMDIyX2RhdGFfY29uc3VsdGFudC8wMSBERCAxL2RhdGFfY2xlYW4uc2F2IikNCmBgYA0KDQoxLiAgKipUaGVyZSBhcmUgc29tZSBzcGVjaWZpYyB2YXJpYWJsZXMgdXNpbmcgaW4gdGhpcyBhbmFseXNpcyoqDQoNCmBgYHtyfQ0KbmFtZXMoZGF0YV9jbGVhbikNCmBgYA0KDQoqKjEuMS4gUGVyc29uYWwgZmFjdG9yczoqKg0KDQpcKyBDdXJyZW50IHNtb2tpbmc6IFNUVCAzOSBDMTcuU21va2luZ19wcmVzZW50DQoNClwrIEtub3dsZWRnZSA6IFNUVDogNjAgVE9OR19LSUVOVEhVQ0NIVU5HDQoNClwrIFNtb2tpbmcgdGVjaG5pcXVlIFNUVDogOTggUExfVEhVQ0hBTkgNCg0KKioxLjIuIEluZGVwZW5kZW50IHZhcmlhYmxlcyoqDQoNCipDb3ZhcnMgMToqIFNvY2lhbCBTdXBwb3J0aXZlOiBTVFQNCjEyLDEzLDEsNCBDOS4xQ2FyZWdpdmVyX215c2VsZjsgQzkuMkNhcmVnaXZlcl9zcG91c2U7IEM5LjMuQ2FyZWdpdmVyX2NoaWxkcmVuDQoNCipDb3ZhcnMgMjoqIG1NUkM6IDEzMCAqVE9OR0NBVCoNCg0KQ0FUOiBTVFQgMTQwICpQSEFOTE9BSU1tcmMqDQoNCipHcm91cCAxOiogVE9OR1lESU5IIDsgVE9OR0FUQiA7IFRPTkdTTg0KDQoqKjEuMy4gTWVkaWF0b3JzKio6IEludGVudGlvbiA6ICoqNzTCoCBUT05HX0xZVEhVWUVUKioNCg0KKioxLjQuIE91dGNvbWUqKiBUcmVhdG1lbnQgYWRoZXJlbmNlIDogVHXDom4gdGjhu6cgxJFp4buBdSB0cuG7izoxNDMgKlRBSTJncm91cCoNCg0KYGBge3J9DQpkYXRhIDwtIHN1YnNldChkYXRhX2NsZWFuLCBzZWxlY3QgPSBjKCJDOS4xQ2FyZWdpdmVyX215c2VsZiIsICJDOS4yQ2FyZWdpdmVyX3Nwb3VzZSIsICJDOS4zLkNhcmVnaXZlcl9jaGlsZHJlbiIsIlRPTkdfTFlUSFVZRVQiLCAiQzE3LlNtb2tpbmdfcHJlc2VudCIsICJUT05HX0tJRU5USFVDQ0hVTkciLCAiUExfVEhVQ0hBTkgiLCAiVE9OR21NUkMiLCAiVE9OR0NBVCIsICdUT05HWURJTkgnLCJUT05HQVRCIiAsICJUT05HU04iLCAiVEFJMmdyb3VwIikpDQpgYGANCg0KYGBge3J9DQpuYW1lcyhkYXRhKQ0KDQpWaWV3KGRhdGEpDQpgYGANCg0KRGVmaW5lIHRoZSB2YXJpYWJsZXMNCg0KYGBge3J9DQoNCmRhdGEkQzE3LlNtb2tpbmdfcHJlc2VudD1hcy5mYWN0b3IoZGF0YSRDMTcuU21va2luZ19wcmVzZW50KQ0KZGF0YSRUT05HX0tJRU5USFVDQ0hVTkc9YXMuZmFjdG9yKGRhdGEkVE9OR19LSUVOVEhVQ0NIVU5HKQ0KZGF0YSRDOS4xQ2FyZWdpdmVyX215c2VsZj1hcy5mYWN0b3IoZGF0YSRDOS4xQ2FyZWdpdmVyX215c2VsZikNCmRhdGEkQzkuMkNhcmVnaXZlcl9zcG91c2U9YXMuZmFjdG9yKGRhdGEkQzkuMkNhcmVnaXZlcl9zcG91c2UpDQpkYXRhJEM5LjMuQ2FyZWdpdmVyX2NoaWxkcmVuPWFzLmZhY3RvcihkYXRhJEM5LjMuQ2FyZWdpdmVyX2NoaWxkcmVuKQ0KDQpgYGANCg0KMi4gICoqRGVzY3JpcHRpdmUgcmVzdWx0cyoqDQoNCmBgYHtyfQ0KIGxpYnJhcnkoY29tcGFyZUdyb3VwcykNCmBgYA0KDQpgYGB7cn0NCnQxPWNvbXBhcmVHcm91cHMoVEFJMmdyb3VwfkMxNy5TbW9raW5nX3ByZXNlbnQrVE9OR19LSUVOVEhVQ0NIVU5HK1BMX1RIVUNIQU5IKysgQzkuMUNhcmVnaXZlcl9teXNlbGYrQzkuMkNhcmVnaXZlcl9zcG91c2UrQzkuMy5DYXJlZ2l2ZXJfY2hpbGRyZW4rVE9OR21NUkMrVE9OR1lESU5IK1RPTkdBVEIrVE9OR1NOK1RPTkdfTFlUSFVZRVQsIGRhdGE9ZGF0YSkNCmBgYA0KDQoqVGFibGUgMS4gRGlzdHJpYnV0aW9uIGZvciBzZWxlY3RlZCB2YXJpYWJsZXMgYW5kIGFzc29jaWF0aW9ucyB3aXRoIG91dGNvbWUqDQoNCmBgYHtyfQ0KY3JlYXRlVGFibGUodDEpDQpgYGANCg0KMy4gIE1vZGVsDQogICAgTW9kZWwgMSAobWVkaWF0b3IgXH4gaW5kZXBlbnQrY292YXJpYXRlcykNCg0KICAgIE1vZGVsIDIgKE91cmNvbWUgXH4gYWxsKQ0KDQpgYGB7cn0NCm1vZGVsLm0gPC0gbG0oVE9OR19MWVRIVVlFVCB+IEMxNy5TbW9raW5nX3ByZXNlbnQrVE9OR19LSUVOVEhVQ0NIVU5HK1BMX1RIVUNIQU5IKysgQzkuMUNhcmVnaXZlcl9teXNlbGYrQzkuMkNhcmVnaXZlcl9zcG91c2UrQzkuMy5DYXJlZ2l2ZXJfY2hpbGRyZW4rVE9OR21NUkMrVE9OR1lESU5IK1RPTkdBVEIrVE9OR1NOLCBkYXRhID0gZGF0YSkNCg0KbW9kZWwueSA8LSBnbG0oVEFJMmdyb3VwIH4gVE9OR19MWVRIVVlFVCArIEMxNy5TbW9raW5nX3ByZXNlbnQrVE9OR19LSUVOVEhVQ0NIVU5HK1BMX1RIVUNIQU5IKysgQzkuMUNhcmVnaXZlcl9teXNlbGYrQzkuMkNhcmVnaXZlcl9zcG91c2UrQzkuMy5DYXJlZ2l2ZXJfY2hpbGRyZW4rVE9OR21NUkMrVE9OR1lESU5IK1RPTkdBVEIrVE9OR1NOLCBkYXRhID0gZGF0YSwgZmFtaWx5PSJiaW5vbWlhbCIpDQoNCg0Kb3V0LjEgPC0gbWVkaWF0ZShtb2RlbC5tLCBtb2RlbC55LCBzaW1zID0gMTAwMCwgYm9vdCA9IFRSVUUsIHRyZWF0ID0gIkM5LjJDYXJlZ2l2ZXJfc3BvdXNlIiwNCiAgICAgICAgICAgICAgICAgbWVkaWF0b3IgPSAiVE9OR19MWVRIVVlFVCIpDQpvdXQuMiA8LSBtZWRpYXRlKG1vZGVsLm0sIG1vZGVsLnksIHNpbXMgPSAxMDAwLCB0cmVhdCA9ICJDOS4yQ2FyZWdpdmVyX3Nwb3VzZSIsDQogICAgICAgICAgICAgICAgIG1lZGlhdG9yID0gIlRPTkdfTFlUSFVZRVQiKQ0KDQoNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkob3V0LjEpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KG91dC4yKQ0KYGBgDQo=