R07 STA1341 : Identifikasi dan Pendugaan Parameter Model ARIMA
Package
library(tseries)
library(forecast)
library(TSA)
Data Bangkitan
AR(1)
Data
set.seed(99)
<- arima.sim(list(order = c(1,0,0), ar = 0.6), n = 175)
ar1 <- ar1[-c(1:25)] ar1
Plot Time Series
plot(ar1,
col = "navyblue",
lwd = 1,
type = "o",
xlab = "Time",
ylab = "Data")
Cek Kestasioneran
acf(ar1, main="ACF", lag.max=20)
adf.test(ar1)
##
## Augmented Dickey-Fuller Test
##
## data: ar1
## Dickey-Fuller = -3.6153, Lag order = 5, p-value = 0.03429
## alternative hypothesis: stationary
#stasioner
Spesifikasi Model
par(mfrow = c(1,2))
acf(ar1, main="ACF", lag.max=20)
pacf(ar1, main="PACF", lag.max=20) #ARIMA(1,0,0)
par(mfrow = c(1,1))
eacf(ar1) #ARIMA(0,0,5) #ARIMA(1,0,2) #ARIMA(2,0,3)
## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 x x x x x o o o o o o o o o
## 1 o x o o o o o o o o o o o o
## 2 x o x o o o o o o o o o o o
## 3 x x o o o o o o o o o o o o
## 4 o x o o o o o o o o o o o o
## 5 x o x o o o o o o o o o o o
## 6 x o x o o o o o o o o o o o
## 7 x x x o o o o o o o o o o o
#Terdapat 4 model tentatif
Model Tentatif :
ARIMA (1,0,0)
ARIMA (0,0,5)
ARIMA (1,0,2)
ARIMA (2,0,3)
Pendugaan Parameter Model
=Arima(ar1, order=c(1,0,0),method="ML")
model1.ar1summary(model1.ar1) #AIC=421.01
## Series: ar1
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.6450 -0.1528
## s.e. 0.0617 0.2189
##
## sigma^2 = 0.9405: log likelihood = -207.5
## AIC=421.01 AICc=421.17 BIC=430.04
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.001963777 0.963322 0.7854338 -5.45378 202.1437 0.9313397
## ACF1
## Training set 0.05978644
::coeftest(model1.ar1) #seluruh parameter signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.644968 0.061691 10.4548 <2e-16 ***
## intercept -0.152769 0.218910 -0.6979 0.4853
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=Arima(ar1, order=c(0,0,5),method="ML")
model2.ar1summary(model2.ar1) #AIC=426.55
## Series: ar1
## ARIMA(0,0,5) with non-zero mean
##
## Coefficients:
## ma1 ma2 ma3 ma4 ma5 mean
## 0.6970 0.3085 0.1823 0.2168 0.1076 -0.1511
## s.e. 0.0829 0.0969 0.0917 0.1117 0.0828 0.1943
##
## sigma^2 = 0.9506: log likelihood = -206.28
## AIC=426.55 AICc=427.34 BIC=447.63
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.001515523 0.9552751 0.784363 12.90049 194.1285 0.9300701
## ACF1
## Training set 0.0158404
::coeftest(model2.ar1) #ma4 dan ma5 tidak signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ma1 0.697012 0.082899 8.4080 < 2.2e-16 ***
## ma2 0.308504 0.096933 3.1826 0.001459 **
## ma3 0.182325 0.091681 1.9887 0.046736 *
## ma4 0.216787 0.111709 1.9406 0.052303 .
## ma5 0.107601 0.082757 1.3002 0.193532
## intercept -0.151110 0.194288 -0.7778 0.436709
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=Arima(ar1, order=c(1,0,2),method="ML")
model3.ar1summary(model3.ar1) #AIC=422.19
## Series: ar1
## ARIMA(1,0,2) with non-zero mean
##
## Coefficients:
## ar1 ma1 ma2 mean
## 0.7467 -0.0537 -0.1792 -0.1590
## s.e. 0.1517 0.1903 0.1389 0.2327
##
## sigma^2 = 0.9353: log likelihood = -206.09
## AIC=422.19 AICc=422.6 BIC=437.24
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.00212455 0.9541527 0.780826 1.083697 198.5726 0.925876
## ACF1
## Training set 0.01325487
::coeftest(model3.ar1) #ma1 dan ma2 tidak signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.746744 0.151659 4.9238 8.487e-07 ***
## ma1 -0.053711 0.190289 -0.2823 0.7777
## ma2 -0.179190 0.138872 -1.2903 0.1969
## intercept -0.159049 0.232749 -0.6833 0.4944
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=Arima(ar1, order=c(2,0,3),method="ML")
model4.ar1summary(model4.ar1) #AIC=425.11
## Series: ar1
## ARIMA(2,0,3) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 ma3 mean
## 0.0029 0.6134 0.7025 -0.2774 -0.2198 -0.1644
## s.e. 0.4416 0.3126 0.4481 0.2466 0.1337 0.2403
##
## sigma^2 = 0.9413: log likelihood = -205.55
## AIC=425.11 AICc=425.9 BIC=446.18
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.003018973 0.9506111 0.769734 6.854966 187.5858 0.9127235
## ACF1
## Training set 0.006375239
::coeftest(model4.ar1) #hanya ar2 yang signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.0029382 0.4416245 0.0067 0.99469
## ar2 0.6134403 0.3126265 1.9622 0.04974 *
## ma1 0.7024963 0.4480985 1.5677 0.11694
## ma2 -0.2774149 0.2465530 -1.1252 0.26052
## ma3 -0.2198071 0.1337266 -1.6437 0.10024
## intercept -0.1644415 0.2403440 -0.6842 0.49385
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#AIC ARIMA dan Signifikansi Parameter
<-data.frame(
aic.arima4"Model"=c("ARIMA(1,0,0)", "ARIMA(0,0,5)", "ARIMA(1,0,2)","ARIMA(2,0,3)"),
"AIC"=c(model1.ar1$aic, model2.ar1$aic, model3.ar1$aic,model4.ar1$aic),
"Signifikansi"=c("Signifikan","Tidak Signifikan", "Tidak Signifikan","Tidak Signifikan"))
aic.arima4
## Model AIC Signifikansi
## 1 ARIMA(1,0,0) 421.0091 Signifikan
## 2 ARIMA(0,0,5) 426.5528 Tidak Signifikan
## 3 ARIMA(1,0,2) 422.1855 Tidak Signifikan
## 4 ARIMA(2,0,3) 425.1099 Tidak Signifikan
#model yang dipilih adalah model 1, yaitu ARIMA(1,0,0)
ARIMA(1,2,2)
Data
set.seed(77)
<- arima.sim(list(order = c(1,2,2), ar = 0.6, ma = c(0.55,0.65)), n = 175)
arima <- arima[-c(1:25)] arima
Plot Time Series
plot(arima, col = "navyblue", lwd = 1, type = "o", xlab = "Time", ylab = "Data")
Cek Kestasioneran
acf(arima, main="ACF", lag.max=20)
adf.test(arima)
## Warning in adf.test(arima): p-value greater than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: arima
## Dickey-Fuller = 1.0709, Lag order = 5, p-value = 0.99
## alternative hypothesis: stationary
#tidak stasioner
Penanganan Ketidakstasioneran
# Differencing Satu Kali
=diff(arima, difference=1)
difplot.ts(dif, xlab="TIME", ylab="DATA")
points(dif)
acf(dif, lag.max=20) #cek kembali apakah sudah stasioner
adf.test(dif) #tidak stasioner
##
## Augmented Dickey-Fuller Test
##
## data: dif
## Dickey-Fuller = -1.3154, Lag order = 5, p-value = 0.8616
## alternative hypothesis: stationary
# Differencing Dua Kali
=diff(arima, difference=2)
dif2plot.ts(dif2, xlab="TIME", ylab="STOCK")
points(dif2)
acf(dif2, lag.max=20) #cek kembali apakah sudah stasioner
adf.test(dif2) #stasioner
## Warning in adf.test(dif2): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: dif2
## Dickey-Fuller = -4.1608, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
Spesifikasi Model
par(mfrow = c(1,2))
acf(dif2, main="ACF", lag.max=20) #ARIMA(0,2,3)
pacf(dif2, main="PACF", lag.max=20) #ARIMA(5,2,0)
par(mfrow = c(1,1))
eacf(dif2) #ARIMA(0,2,3) #ARIMA(1,2,2) #ARIMA(2,2,3) #ARIMA(3,2,2)
## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 x x x o o o o o o o o o o o
## 1 x x o o o o o o o o o o o o
## 2 x x x o o o o o o o o o o o
## 3 x x o o o o o o o o o o o o
## 4 x x x o o o o o o o o o o o
## 5 x x x x x o o o o o o o o o
## 6 x x x x x o o o o o o o o o
## 7 o x x o x o o x o o o o o o
#Terdapat 5 model tentatif
Model Tentatif :
ARIMA (0,2,3)
ARIMA (5,2,0)
ARIMA (1,2,2)
ARIMA (2,2,3)
ARIMA (3,2,2)
Pendugaan Parameter Model
=Arima(dif2, order=c(0,0,3),method="ML")
model1.ma2summary(model1.ma2) #AIC=446.22
## Series: dif2
## ARIMA(0,0,3) with non-zero mean
##
## Coefficients:
## ma1 ma2 ma3 mean
## 1.1262 1.1180 0.3992 -0.6753
## s.e. 0.0653 0.0709 0.0834 0.3028
##
## sigma^2 = 1.082: log likelihood = -218.11
## AIC=446.22 AICc=446.64 BIC=461.28
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.003487355 1.026319 0.7989779 18.53132 115.97 0.8016652
## ACF1
## Training set 0.09479535
::coeftest(model1.ma2) #seluruh parameter signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ma1 1.126196 0.065347 17.2340 < 2.2e-16 ***
## ma2 1.117960 0.070898 15.7687 < 2.2e-16 ***
## ma3 0.399173 0.083444 4.7837 1.721e-06 ***
## intercept -0.675315 0.302795 -2.2303 0.02573 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=Arima(dif2, order=c(5,0,0),method="ML")
model2.ma2summary(model2.ma2) #AIC=449.77
## Series: dif2
## ARIMA(5,0,0) with non-zero mean
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 mean
## 1.2212 -0.2339 -0.6112 0.5766 -0.1773 -0.6710
## s.e. 0.0798 0.1182 0.1080 0.1185 0.0806 0.3701
##
## sigma^2 = 1.097: log likelihood = -217.89
## AIC=449.77 AICc=450.56 BIC=470.84
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.003575565 1.026093 0.8061788 30.43585 131.2975 0.8088904
## ACF1
## Training set -0.000817307
::coeftest(model2.ma2) #seluruh parameter signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 1.221215 0.079803 15.3029 < 2.2e-16 ***
## ar2 -0.233859 0.118191 -1.9786 0.04786 *
## ar3 -0.611157 0.108020 -5.6578 1.533e-08 ***
## ar4 0.576578 0.118468 4.8669 1.133e-06 ***
## ar5 -0.177309 0.080640 -2.1988 0.02789 *
## intercept -0.671039 0.370115 -1.8131 0.06982 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=Arima(dif2, order=c(1,0,2),method="ML")
model3.ma2summary(model3.ma2) #AIC=440.98
## Series: dif2
## ARIMA(1,0,2) with non-zero mean
##
## Coefficients:
## ar1 ma1 ma2 mean
## 0.5128 0.6838 0.7131 -0.6602
## s.e. 0.0777 0.0609 0.0599 0.4000
##
## sigma^2 = 1.045: log likelihood = -215.49
## AIC=440.98 AICc=441.39 BIC=456.03
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.004418066 1.00849 0.7745269 14.10371 114.4427 0.7771319
## ACF1
## Training set 0.02851083
::coeftest(model3.ma2) #seluruh parameter signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.512801 0.077744 6.5961 4.222e-11 ***
## ma1 0.683781 0.060917 11.2249 < 2.2e-16 ***
## ma2 0.713057 0.059855 11.9131 < 2.2e-16 ***
## intercept -0.660192 0.400003 -1.6505 0.09885 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=Arima(dif2, order=c(2,0,3),method="ML")
model4.ma2summary(model4.ma2) #AIC=444.26
## Series: dif2
## ARIMA(2,0,3) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 ma3 mean
## 0.6476 -0.1304 0.5717 0.6765 -0.0461 -0.6696
## s.e. 0.9001 0.4524 0.9012 0.6417 0.6687 0.3708
##
## sigma^2 = 1.054: log likelihood = -215.13
## AIC=444.26 AICc=445.04 BIC=465.33
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.003502916 1.005823 0.7764129 19.2656 121.0031 0.7790243
## ACF1
## Training set 0.004361866
::coeftest(model4.ma2) #tidak ada yang signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.647575 0.900065 0.7195 0.47185
## ar2 -0.130386 0.452420 -0.2882 0.77320
## ma1 0.571732 0.901233 0.6344 0.52583
## ma2 0.676509 0.641728 1.0542 0.29179
## ma3 -0.046113 0.668699 -0.0690 0.94502
## intercept -0.669619 0.370820 -1.8058 0.07095 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=Arima(dif2, order=c(3,0,2),method="ML")
model5.ma2summary(model5.ma2) #AIC=444.24
## Series: dif2
## ARIMA(3,0,2) with non-zero mean
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2 mean
## 0.5789 -0.0798 -0.0176 0.6400 0.7113 -0.6702
## s.e. 0.1243 0.1955 0.1410 0.0948 0.0968 0.3687
##
## sigma^2 = 1.054: log likelihood = -215.12
## AIC=444.24 AICc=445.03 BIC=465.32
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.003453584 1.005812 0.7763457 19.21459 120.6696 0.7789569
## ACF1
## Training set 0.005220826
::coeftest(model5.ma2) #ar2 dan ar3 tidak signifikan lmtest
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.578884 0.124302 4.6571 3.207e-06 ***
## ar2 -0.079815 0.195451 -0.4084 0.68301
## ar3 -0.017646 0.141018 -0.1251 0.90042
## ma1 0.639999 0.094800 6.7511 1.468e-11 ***
## ma2 0.711290 0.096752 7.3517 1.958e-13 ***
## intercept -0.670204 0.368720 -1.8177 0.06912 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#AIC ARIMA dan Signifikansi Parameter
<-data.frame(
aic.arima3"Model"=c("ARIMA(0,2,3)", "ARIMA(5,2,0)", "ARIMA(1,2,2)","ARIMA(2,2,3)", "ARIMA(3,2,2)"),
"AIC"=c(model1.ma2$aic, model2.ma2$aic, model3.ma2$aic,model4.ma2$aic,model5.ma2$aic),
"Signifikansi"=c("Signifikan","Signifikan", "Signifikan","Tidak Signifikan", "Tidak Signifikan"))
aic.arima3
## Model AIC Signifikansi
## 1 ARIMA(0,2,3) 446.2232 Signifikan
## 2 ARIMA(5,2,0) 449.7704 Signifikan
## 3 ARIMA(1,2,2) 440.9779 Signifikan
## 4 ARIMA(2,2,3) 444.2550 Tidak Signifikan
## 5 ARIMA(3,2,2) 444.2449 Tidak Signifikan
#model yang dipilih adalah ARIMA(1,2,2)
Data Asli
Data Kurs
Download data : (Click here)
setwd("D:/MATERI KULIAH S2 IPB/ASPRAK 1/RESPONSI 7")
<-read.csv("kurs.csv",header=T)
datakurs<-ts(datakurs) datakurs.ts
Plot Time Series
plot.ts(datakurs.ts, lty=1, xlab="waktu", ylab="Data Asal Kurs", main="Plot Kurs")
points(datakurs.ts)
Cek Kestasioneran
acf(datakurs.ts, lag.max=40, main="data kurs Indonesia")
adf.test(datakurs.ts)
## Warning in adf.test(datakurs.ts): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: datakurs.ts
## Dickey-Fuller = -3.9868, Lag order = 12, p-value = 0.01
## alternative hypothesis: stationary
Penanganan Ketidakstasioneran
<-diff(datakurs.ts,differences = 1)
datakurs.diffplot.ts(datakurs.diff, lty=1, xlab="waktu", ylab="Data Difference 1 Kurs", main="Plot Kurs")
points(datakurs.diff)
acf(datakurs.diff, lag.max=40, main="data difference kurs Indonesia") #cek kembali apakah sudah stasioner
adf.test(datakurs.diff)
## Warning in adf.test(datakurs.diff): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: datakurs.diff
## Dickey-Fuller = -10.927, Lag order = 12, p-value = 0.01
## alternative hypothesis: stationary
Spesifikasi Model
acf(datakurs.diff, lag.max=20, main="ACF data kurs Indonesia")
pacf(datakurs.diff, lag.max=20, main="PACF data kurs Indonesia")
eacf(datakurs.diff,ar.max = 7,ma.max = 7)
## AR/MA
## 0 1 2 3 4 5 6 7
## 0 x x o o o o o o
## 1 x o o o o o o o
## 2 x x o o o o o o
## 3 x x x o o o o o
## 4 x x x x o o o o
## 5 o x o x o o o o
## 6 x x o x x o o o
## 7 x x o x x x x o
Model Tentatif :
ARIMA (0,1,2)
ARIMA (2,1,0)
ARIMA (1,1,1)
ARIMA (2,1,2)
ARIMA (3,1,3)
Penentuan Model Terbaik berdasar AIC
<-arima(datakurs.diff, order=c(0,0,2), method="ML")
model1<-arima(datakurs.diff, order=c(2,0,0), method="ML")
model2<-arima(datakurs.diff, order=c(1,0,1), method="ML")
model3<-arima(datakurs.diff, order=c(2,0,2), method="ML")
model4<-arima(datakurs.diff, order=c(3,0,3), method="ML")
model5
#Menggunakan fungsi `Arima`
Arima(datakurs.diff, order=c(0,0,2), method="ML")
## Series: datakurs.diff
## ARIMA(0,0,2) with non-zero mean
##
## Coefficients:
## ma1 ma2 mean
## 0.1306 0.0566 2.7250
## s.e. 0.0235 0.0228 1.7961
##
## sigma^2 = 4148: log likelihood = -10100.23
## AIC=20208.46 AICc=20208.49 BIC=20230.47
Arima(datakurs.diff, order=c(2,0,0), method="ML")
## Series: datakurs.diff
## ARIMA(2,0,0) with non-zero mean
##
## Coefficients:
## ar1 ar2 mean
## 0.1329 0.0496 2.7250
## s.e. 0.0235 0.0235 1.8494
##
## sigma^2 = 4144: log likelihood = -10099.31
## AIC=20206.62 AICc=20206.64 BIC=20228.62
Arima(datakurs.diff, order=c(1,0,1), method="ML")
## Series: datakurs.diff
## ARIMA(1,0,1) with non-zero mean
##
## Coefficients:
## ar1 ma1 mean
## 0.6156 -0.4931 2.7195
## s.e. 0.1381 0.1535 1.9917
##
## sigma^2 = 4138: log likelihood = -10097.93
## AIC=20203.85 AICc=20203.87 BIC=20225.85
Arima(datakurs.diff, order=c(2,0,2), method="ML")
## Series: datakurs.diff
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
## Warning in sqrt(diag(x$var.coef)): NaNs produced
## ar1 ar2 ma1 ma2 mean
## 0.1325 0.3887 -0.0078 -0.3458 2.7162
## s.e. NaN NaN NaN NaN 2.0388
##
## sigma^2 = 4140: log likelihood = -10097.56
## AIC=20207.13 AICc=20207.17 BIC=20240.13
Arima(datakurs.diff, order=c(3,0,3), method="ML")
## Series: datakurs.diff
## ARIMA(3,0,3) with non-zero mean
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2 ma3 mean
## 0.2144 0.3254 0.1280 -0.0865 -0.2953 -0.1488 2.7559
## s.e. 1.1357 0.4632 0.5875 1.1299 0.4616 0.5106 2.1334
##
## sigma^2 = 4142: log likelihood = -10096.96
## AIC=20209.92 AICc=20210 BIC=20253.93
#AIC ARIMA
<-data.frame(
aic.arima"Model"=c("ARIMA(0,1,2)", "ARIMA(2,1,0)", "ARIMA(1,1,1)","ARIMA(2,1,2)", "ARIMA(3,1,3)"),
"AIC"=c(model1$aic, model2$aic, model3$aic,model4$aic,model5$aic))
aic.arima
## Model AIC
## 1 ARIMA(0,1,2) 20206.46
## 2 ARIMA(2,1,0) 20204.62
## 3 ARIMA(1,1,1) 20201.85
## 4 ARIMA(2,1,2) 20205.13
## 5 ARIMA(3,1,3) 20207.92
# Model terbaik berdasarkan AIC arima(1,1,1), memastikan model terbaik dengan menaikkan dan menurunkan ordo
library(lmtest)
<-arima(datakurs.diff, order=c(1,0,1), method="ML")
modelacoeftest(arima(datakurs.diff, order=c(1,0,1), method="ML"))
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.61555 0.13814 4.4561 8.348e-06 ***
## ma1 -0.49310 0.15353 -3.2117 0.00132 **
## intercept 2.71950 1.99173 1.3654 0.17213
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
<-arima(datakurs.diff, order=c(1,0,0), method="ML")
modelbcoeftest(arima(datakurs.diff, order=c(1,0,0), method="ML"))
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.139804 0.023271 6.0077 1.881e-09 ***
## intercept 2.725207 1.760046 1.5484 0.1215
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
<-arima(datakurs.diff, order=c(0,0,1), method="ML")
modelccoeftest(arima(datakurs.diff, order=c(0,0,1), method="ML"))
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ma1 0.126577 0.022112 5.7244 1.038e-08 ***
## intercept 2.725259 1.707339 1.5962 0.1104
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
<-arima(datakurs.diff, order=c(2,0,1), method="ML")
modeldcoeftest(arima(datakurs.diff, order=c(2,0,1), method="ML"))
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.789543 0.185871 4.2478 2.159e-05 ***
## ar2 -0.039822 0.040781 -0.9765 0.3288179
## ma1 -0.663170 0.184732 -3.5899 0.0003308 ***
## intercept 3.193692 2.033457 1.5706 0.1162820
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
<-arima(datakurs.diff, order=c(1,0,2), method="ML")
modelecoeftest(arima(datakurs.diff, order=c(1,0,2), method="ML"))
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.814294 0.117360 6.9384 3.965e-12 ***
## ma1 -0.685359 0.120967 -5.6657 1.464e-08 ***
## ma2 -0.052014 0.034733 -1.4975 0.1343
## intercept 2.675207 2.134328 1.2534 0.2101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#AIC ARIMA dan Signifikansi Parameter
<-data.frame(
aic.arima2"Model"=c("ARIMA(1,1,1)", "ARIMA(1,1,0)", "ARIMA(0,1,1)","ARIMA(2,1,1)", "ARIMA(1,1,2)"),
"AIC"=c(modela$aic, modelb$aic, modelc$aic,modeld$aic,modele$aic),
"Signifikansi"=c("Signifikan","Signifikan", "Signifikan","Tidak Signifikan", "Tidak Signifikan"))
aic.arima2
## Model AIC Signifikansi
## 1 ARIMA(1,1,1) 20201.85 Signifikan
## 2 ARIMA(1,1,0) 20207.07 Signifikan
## 3 ARIMA(0,1,1) 20210.61 Signifikan
## 4 ARIMA(2,1,1) 20202.49 Tidak Signifikan
## 5 ARIMA(1,1,2) 20202.00 Tidak Signifikan
#ar(1) dan ma(1) aic lebih besar, arma(2,1), arma(1,2) komponen ordo 2 tidak sig
Model Terbaik
#ARIMA (1,1,1)
<-arima(datakurs.diff, order=c(1,0,1), method="ML")
mod.arima mod.arima
##
## Call:
## arima(x = datakurs.diff, order = c(1, 0, 1), method = "ML")
##
## Coefficients:
## ar1 ma1 intercept
## 0.6156 -0.4931 2.7195
## s.e. 0.1381 0.1535 1.9917
##
## sigma^2 estimated as 4131: log likelihood = -10097.93, aic = 20201.85
coeftest(mod.arima)
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.61555 0.13814 4.4561 8.348e-06 ***
## ma1 -0.49310 0.15353 -3.2117 0.00132 **
## intercept 2.71950 1.99173 1.3654 0.17213
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
<-arima(datakurs.ts, order=c(1,1,1), method="ML")
mod.arima2 mod.arima2
##
## Call:
## arima(x = datakurs.ts, order = c(1, 1, 1), method = "ML")
##
## Coefficients:
## ar1 ma1
## 0.6191 -0.4952
## s.e. 0.1385 0.1541
##
## sigma^2 estimated as 4135: log likelihood = -10098.86, aic = 20201.71
coeftest(mod.arima2)
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.61909 0.13849 4.4703 7.811e-06 ***
## ma1 -0.49524 0.15411 -3.2136 0.001311 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1