1+2 + 2*3 - 2^2 + exp(2)/2
## [1] 8.694528
2*pi
## [1] 6.283185
\[ a=3, b=(1,2,3,4),c=(4,5,6,7), d = {\begin{pmatrix} 1 & 4\\ 2 & 5\\ 3 & 6\\ 4 & 7\\ \end{pmatrix}}, e= \begin{pmatrix} 1 & 2 & 3 & 4\\ 4 & 5 & 6 & 7\\ \end{pmatrix} \]
a <- 3
print(a)
## [1] 3
b <- c(1,2,3,4)
print(b)
## [1] 1 2 3 4
print(b[1])
## [1] 1
c <- 4:7
d <- cbind(b,c)
print(d)
## b c
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
## [4,] 4 7
e <- rbind(b,c)
print(e)
## [,1] [,2] [,3] [,4]
## b 1 2 3 4
## c 4 5 6 7
print(e[2,2])
## c
## 5
print(e[2,])
## [1] 4 5 6 7
\[ 2b+1=(2\times 1+1,2\times 2+1,2\times 3+1,2\times 4 + 1)\]
print(2*b+1)
## [1] 3 5 7 9
\[ b + c = (1+4,2+5,3+6,4+7) \]
print(b+c)
## [1] 5 7 9 11
\[ 2e=\begin{pmatrix} 2 \times 1 +5& 2 \times 2+5 & 2 \times 3+5 & 2 \times 4+5\\ 2 \times 4+5 & 2 \times 5+5 & 2 \times 6+5 & 2 \times 7+5\\ \end{pmatrix} \]
print(2*e+5)
## [,1] [,2] [,3] [,4]
## b 7 9 11 13
## c 13 15 17 19
\[ d'd = {\begin{pmatrix} 1 & 2 & 3 & 4\\ 4 & 5 & 6 & 7\\ \end{pmatrix}} ' {\begin{pmatrix} 1 & 4\\ 2 & 5\\ 3 & 6\\ 4 & 7\\ \end{pmatrix}} \]
print(t(d)%*%d)
## b c
## b 30 60
## c 60 126
a<-3
if(a ==3){
print("a==3")
}else{
print("a!=3")
}
## [1] "a==3"
\(x=1+2+3+...+10, x=?\)
x<-0
for(i in 1:10){
x=x+i
}
print(x)
## [1] 55
Chapter 3.3, finite population sampling problem: population={1,2,3,4}, sample size n=2, sampling with replacement
sample.mat<-cbind(c(1,1,1,2,2,3,1,2,3,4),c(2,3,4,3,4,4,1,2,3,4))
delta<-c(0.1,0.1,0.4,0.4)
i=1
sample.prob<-tau.hat<-s2<-Vhat<-NULL
for(i in 1:10){
tmp1<-sample.mat[i,1]
tmp2<-sample.mat[i,2]
if(tmp1!=tmp2){
sample.prob[i]<-2*delta[tmp1]*delta[tmp2]
}else{
sample.prob[i]<-delta[tmp1]*delta[tmp2]
}
tau.hat[i]<-(tmp1/delta[tmp1]+tmp2/delta[tmp2])/2
s2[i]<-(tmp1/delta[tmp1]-tau.hat[i])^2+(tmp2/delta[tmp2]-tau.hat[i])^2
Vhat[i]<-s2[i]/2
}
print(cbind(sample.mat,sample.prob,tau.hat,s2,Vhat))
## sample.prob tau.hat s2 Vhat
## [1,] 1 2 0.02 15.00 50.000 25.0000
## [2,] 1 3 0.08 8.75 3.125 1.5625
## [3,] 1 4 0.08 10.00 0.000 0.0000
## [4,] 2 3 0.08 13.75 78.125 39.0625
## [5,] 2 4 0.08 15.00 50.000 25.0000
## [6,] 3 4 0.32 8.75 3.125 1.5625
## [7,] 1 1 0.01 10.00 0.000 0.0000
## [8,] 2 2 0.01 20.00 0.000 0.0000
## [9,] 3 3 0.16 7.50 0.000 0.0000
## [10,] 4 4 0.16 10.00 0.000 0.0000
Without for loop
tmp1.v<-sample.mat[,1]
tmp2.v<-sample.mat[,2]
sample.prob.v<-delta[tmp1.v]*delta[tmp2.v]*c(2,2,2,2,2,2,1,1,1,1)
tau.hat.v<-(tmp1.v/delta[tmp1.v]+tmp2.v/delta[tmp2.v])/2
s2.v<-(tmp1.v/delta[tmp1.v]-tau.hat.v)^2+(tmp2.v/delta[tmp2.v]-tau.hat.v)^2
Vhat.v<-s2.v/2
print(cbind(sample.mat,sample.prob.v,tau.hat.v,s2.v,Vhat.v))
## sample.prob.v tau.hat.v s2.v Vhat.v
## [1,] 1 2 0.02 15.00 50.000 25.0000
## [2,] 1 3 0.08 8.75 3.125 1.5625
## [3,] 1 4 0.08 10.00 0.000 0.0000
## [4,] 2 3 0.08 13.75 78.125 39.0625
## [5,] 2 4 0.08 15.00 50.000 25.0000
## [6,] 3 4 0.32 8.75 3.125 1.5625
## [7,] 1 1 0.01 10.00 0.000 0.0000
## [8,] 2 2 0.01 20.00 0.000 0.0000
## [9,] 3 3 0.16 7.50 0.000 0.0000
## [10,] 4 4 0.16 10.00 0.000 0.0000
The expectation of \(\hat{\tau}\)
E.tau.hat<-sum(sample.prob*tau.hat)
print(E.tau.hat)
## [1] 10
The expectation of \(\hat{V}(\hat{\tau})\)
E.Vhat<-sum(sample.prob*Vhat)
print(E.Vhat)
## [1] 6.25