Librerías y csv

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
# library(plotly) # no se está usando
library(knitr)
library(PerformanceAnalytics) # Para correlaciones gráficas
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
library(caret)  # Para particionar
## Loading required package: lattice
library(Metrics) # Para determinar rmse
## 
## Attaching package: 'Metrics'
## The following objects are masked from 'package:caret':
## 
##     precision, recall
library(PerformanceAnalytics) # Para cor gráfica
datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/Analisis-Inteligente-de-datos/main/datos/Advertising_Web.csv")
str(datos)
## 'data.frame':    200 obs. of  7 variables:
##  $ X.1      : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ X        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ TV       : num  230.1 44.5 17.2 151.5 180.8 ...
##  $ Radio    : num  37.8 39.3 45.9 41.3 10.8 48.9 32.8 19.6 2.1 2.6 ...
##  $ Newspaper: num  69.2 45.1 69.3 58.5 58.4 75 23.5 11.6 1 21.2 ...
##  $ Web      : num  306.6 302.7 49.5 257.8 195.7 ...
##  $ Sales    : num  22.1 10.4 9.3 18.5 12.9 7.2 11.8 13.2 4.8 10.6 ...
summary(datos)
##       X.1               X                TV             Radio       
##  Min.   :  1.00   Min.   :  1.00   Min.   :  0.70   Min.   : 0.000  
##  1st Qu.: 50.75   1st Qu.: 50.75   1st Qu.: 74.38   1st Qu.: 9.975  
##  Median :100.50   Median :100.50   Median :149.75   Median :22.900  
##  Mean   :100.50   Mean   :100.50   Mean   :147.04   Mean   :23.264  
##  3rd Qu.:150.25   3rd Qu.:150.25   3rd Qu.:218.82   3rd Qu.:36.525  
##  Max.   :200.00   Max.   :200.00   Max.   :296.40   Max.   :49.600  
##    Newspaper           Web              Sales      
##  Min.   :  0.30   Min.   :  4.308   Min.   : 1.60  
##  1st Qu.: 12.75   1st Qu.: 99.049   1st Qu.:10.38  
##  Median : 25.75   Median :156.862   Median :12.90  
##  Mean   : 30.55   Mean   :159.587   Mean   :14.02  
##  3rd Qu.: 45.10   3rd Qu.:212.312   3rd Qu.:17.40  
##  Max.   :114.00   Max.   :358.247   Max.   :27.00

Seleccionar los datos

datos <- select(datos, TV, Radio, Newspaper, Web, Sales)

Correlaciones lineal entre variables

# cor(datos)
chart.Correlation(datos)
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

Limpiar y partir los datos

set.seed(1550)
n <- nrow(datos)
entrena <- createDataPartition(y = datos$Sales, p = 0.70, list = FALSE, times = 1)

# Datos entrenamiento
datos.entrenamiento <- datos[entrena, ]  # [renglones, columna]

# Datos validación
datos.validacion <- datos[-entrena, ]

Datos de entrenamiento

datos.entrenamiento
##        TV Radio Newspaper        Web Sales
## 3    17.2  45.9      69.3  49.498908   9.3
## 4   151.5  41.3      58.5 257.816893  18.5
## 5   180.8  10.8      58.4 195.660076  12.9
## 7    57.5  32.8      23.5 246.811598  11.8
## 9     8.6   2.1       1.0 144.617385   4.8
## 10  199.8   2.6      21.2 111.272264  10.6
## 15  204.1  32.9      46.0 245.774960  19.0
## 16  195.4  47.7      52.9 148.095134  22.4
## 17   67.8  36.6     114.0 202.638903  12.5
## 23   13.2  15.9      49.6 219.882776   5.6
## 24  228.3  16.9      26.2  51.170073  15.5
## 25   62.3  12.6      18.3 256.965240   9.7
## 26  262.9   3.5      19.5 160.562859  12.0
## 27  142.9  29.3      12.6 275.512483  15.0
## 28  240.1  16.7      22.9 228.157437  15.9
## 29  248.8  27.1      22.9 318.644967  18.9
## 31  292.9  28.3      43.2 121.464347  21.4
## 32  112.9  17.4      38.6 295.883989  11.9
## 33   97.2   1.5      30.0 139.781089   9.6
## 35   95.7   1.4       7.4 321.174609   9.5
## 36  290.7   4.1       8.5 181.983424  12.8
## 37  266.9  43.8       5.0  96.316829  25.4
## 39   43.1  26.7      35.1 122.753591  10.1
## 42  177.0  33.4      38.7 147.859324  17.1
## 44  206.9   8.4      26.4 213.609610  12.9
## 47   89.7   9.9      35.7 216.504015  10.6
## 48  239.9  41.5      18.5 105.962913  23.2
## 49  227.2  15.8      49.9  75.269182  14.8
## 51  199.8   3.1      34.6 151.990733  11.4
## 52  100.4   9.6       3.6  41.335255  10.7
## 54  182.6  46.2      58.7 176.050052  21.2
## 56  198.9  49.4      60.0 204.418927  23.7
## 57    7.3  28.1      41.4 121.328525   5.5
## 59  210.8  49.6      37.7  32.411740  23.8
## 60  210.7  29.5       9.3 138.895554  18.4
## 62  261.3  42.7      54.7 224.832039  24.2
## 63  239.3  15.5      27.3 312.209555  15.7
## 64  102.7  29.6       8.4 183.009750  14.0
## 65  131.1  42.8      28.9 124.382228  18.0
## 66   69.0   9.3       0.9 205.993485   9.3
## 67   31.5  24.6       2.2 216.471397   9.5
## 68  139.3  14.5      10.2 207.661990  13.4
## 69  237.4  27.5      11.0 291.548597  18.9
## 70  216.8  43.9      27.2 149.396103  22.3
## 72  109.8  14.3      31.7 151.990733  12.4
## 74  129.4   5.7      31.3  61.306191  11.0
## 75  213.4  24.6      13.1 156.284261  17.0
## 76   16.9  43.7      89.4  70.234282   8.7
## 78  120.5  28.5      14.2  97.455125  14.2
## 79    5.4  29.9       9.4   4.308085   5.3
## 80  116.0   7.7      23.1 120.053504  11.0
## 81   76.4  26.7      22.3 268.151320  11.8
## 82  239.8   4.1      36.9 169.946395  12.3
## 84   68.4  44.5      35.6  78.393104  13.6
## 85  213.5  43.0      33.8 191.868374  21.7
## 86  193.2  18.4      65.7 223.578793  15.2
## 88  110.7  40.6      63.2 107.430521  16.0
## 89   88.3  25.5      73.4 260.101928  12.9
## 90  109.8  47.8      51.4 162.727890  16.7
## 91  134.3   4.9       9.3 258.355488  11.2
## 92   28.6   1.5      33.0 172.467947   7.3
## 93  217.7  33.5      59.0 150.962754  19.4
## 94  250.9  36.5      72.3 202.102158  22.2
## 98  184.9  21.0      22.0 253.300721  15.5
## 101 222.4   4.3      49.8 125.627143  11.7
## 102 296.4  36.3     100.9  61.005251  23.8
## 103 280.2  10.1      21.4  49.808451  14.8
## 104 187.9  17.2      17.9  97.088630  14.7
## 106 137.9  46.4      59.0 138.762632  19.2
## 107  25.0  11.0      29.7  15.938208   7.2
## 111 225.8   8.2      56.5  95.185762  13.4
## 112 241.7  38.0      23.2 180.511528  21.8
## 113 175.7  15.4       2.4  71.682551  14.1
## 115  78.2  46.8      34.5  76.770428  14.6
## 117 139.2  14.3      25.6 234.183118  12.2
## 118  76.4   0.8      14.8 234.384501   9.4
## 119 125.7  36.9      79.2 187.840415  15.9
## 120  19.4  16.0      22.3 112.892609   6.6
## 122  18.8  21.7      50.4  63.854924   7.0
## 123 224.0   2.4      15.6  89.515821  11.6
## 124 123.1  34.6      12.4  15.757191  15.2
## 125 229.5  32.3      74.2  88.080721  19.7
## 126  87.2  11.8      25.9 121.090982  10.6
## 127   7.8  38.9      50.6 209.471977   6.6
## 128  80.2   0.0       9.2 358.247042   8.8
## 129 220.3  49.0       3.2 187.437060  24.7
## 133   8.4  27.2       2.1 238.055219   5.7
## 135  36.9  38.6      65.6  81.246748  10.8
## 136  48.3  47.0       8.5  61.227323  11.6
## 137  25.6  39.0       9.3  77.230797   9.5
## 139  43.0  25.9      20.5 181.368740   9.6
## 140 184.9  43.9       1.7 106.253829  20.7
## 141  73.4  17.0      12.9 174.772137  10.9
## 142 193.7  35.4      75.6 152.284937  19.2
## 143 220.5  33.2      37.9   6.007436  20.1
## 145  96.2  14.8      38.9 157.440047  11.4
## 146 140.3   1.9       9.0 231.883385  10.3
## 147 240.1   7.3       8.7  23.496943  13.2
## 148 243.2  49.0      44.3 151.990733  25.4
## 149  38.0  40.3      11.9  75.207978  10.9
## 150  44.7  25.8      20.6 235.622449  10.1
## 151 280.7  13.9      37.0  81.040617  16.1
## 152 121.0   8.4      48.7 103.255212  11.6
## 155 187.8  21.1       9.5  63.071208  15.6
## 156   4.1  11.6       5.7 113.270712   3.2
## 157  93.9  43.5      50.5  74.361939  15.3
## 159  11.7  36.9      45.2 185.866079   7.3
## 160 131.7  18.4      34.6 196.370304  12.9
## 161 172.5  18.1      30.7 207.496801  14.4
## 162  85.7  35.8      49.3 188.933530  13.3
## 163 188.4  18.1      25.6 158.461520  14.9
## 164 163.5  36.8       7.4  82.228794  18.0
## 166 234.5   3.4      84.8 135.024909  11.9
## 167  17.9  37.6      21.6  99.936953   8.0
## 169 215.4  23.6      57.6 203.431267  17.1
## 171  50.0  11.6      18.4  64.014805   8.4
## 172 164.5  20.9      47.4  96.180391  14.5
## 173  19.6  20.1      17.0 155.583662   7.6
## 174 168.4   7.1      12.8 218.180829  11.7
## 176 276.9  48.9      41.8 151.990733  27.0
## 177 248.4  30.2      20.3 163.852044  20.2
## 178 170.2   7.8      35.2 104.917344  11.7
## 179 276.7   2.3      23.7 137.323772  11.8
## 180 165.6  10.0      17.6 151.990733  12.6
## 181 156.6   2.6       8.3 122.116470  10.5
## 184 287.6  43.0      71.8 154.309725  26.2
## 185 253.8  21.3      30.0 181.579051  17.6
## 186 205.0  45.1      19.6 208.692690  22.6
## 187 139.5   2.1      26.6 236.744035  10.3
## 188 191.1  28.7      18.2 239.275713  17.3
## 189 286.0  13.9       3.7 151.990733  15.9
## 190  18.7  12.1      23.4 222.906951   6.7
## 191  39.5  41.1       5.8 219.890583  10.8
## 192  75.5  10.8       6.0 301.481194   9.9
## 193  17.2   4.1      31.6 265.028644   5.9
## 194 166.8  42.0       3.6 192.246211  19.6
## 195 149.7  35.6       6.0  99.579981  17.3
## 196  38.2   3.7      13.8 248.841073   7.6
## 197  94.2   4.9       8.1 118.041856   9.7
## 198 177.0   9.3       6.4 213.274671  12.8
## 199 283.6  42.0      66.2 237.498063  25.5
## 200 232.1   8.6       8.7 151.990733  13.4

Datos de validación

datos.validacion
##        TV Radio Newspaper       Web Sales
## 1   230.1  37.8      69.2 306.63475  22.1
## 2    44.5  39.3      45.1 302.65307  10.4
## 6     8.7  48.9      75.0  22.07240   7.2
## 8   120.2  19.6      11.6 229.97146  13.2
## 11   66.1   5.8      24.2  45.35903   8.6
## 12  214.7  24.0       4.0 164.97176  17.4
## 13   23.8  35.1      65.9  87.92109   9.2
## 14   97.5   7.6       7.2 173.65804   9.7
## 18  281.4  39.6      55.8  41.75531  24.4
## 19   69.2  20.5      18.3 210.48991  11.3
## 20  147.3  23.9      19.1 268.73538  14.6
## 21  218.4  27.7      53.4  59.96055  18.0
## 22  237.4   5.1      23.5 296.95207  12.5
## 30   70.6  16.0      40.8  61.32436  10.5
## 34  265.6  20.0       0.3  94.20726  17.4
## 38   74.7  49.4      45.7  56.53622  14.7
## 40  228.0  37.7      32.0 196.48327  21.5
## 41  202.5  22.3      31.6  88.21282  16.6
## 43  293.6  27.7       1.8 174.71682  20.7
## 45   25.1  25.7      43.3 245.76441   8.5
## 46  175.1  22.5      31.5  62.80926  14.9
## 50   66.9  11.7      36.8 205.25350   9.7
## 53  216.4  41.7      39.6 161.80251  22.6
## 55  262.7  28.8      15.9 324.61518  20.2
## 58  136.2  19.2      16.6  60.45435  13.2
## 61   53.5   2.0      21.4  39.21715   8.1
## 71  199.1  30.6      38.7 210.75214  18.3
## 73   26.8  33.0      19.3 211.99091   8.8
## 77   27.5   1.6      20.7 117.10193   6.9
## 83   75.3  20.3      32.5 231.20983  11.3
## 87   76.3  27.5      16.0 193.83089  12.0
## 95  107.4  14.0      10.9 151.99073  11.5
## 96  163.3  31.6      52.9 155.59488  16.9
## 97  197.6   3.5       5.9 139.83054  11.7
## 99  289.7  42.3      51.2 183.56958  25.4
## 100 135.2  41.7      45.9  40.60035  17.2
## 105 238.2  34.3       5.3 112.15549  20.7
## 108  90.4   0.3      23.2 261.38088   8.7
## 109  13.1   0.4      25.6 252.39135   5.3
## 110 255.4  26.9       5.5 273.45413  19.8
## 114 209.6  20.6      10.7  42.88380  15.9
## 116  75.1  35.0      52.7 204.27671  12.6
## 121 141.3  26.8      46.2  65.52546  15.5
## 130  59.6  12.0      43.1 197.19655   9.7
## 131   0.7  39.6       8.7 162.90259   1.6
## 132 265.2   2.9      43.0 172.15666  12.7
## 134 219.8  33.5      45.1 171.47802  19.6
## 138 273.7  28.9      59.7 288.26061  20.8
## 144 104.6   5.7      34.4 336.57109  10.4
## 153 197.6  23.3      14.2 159.52256  16.6
## 154 171.3  39.7      37.7 155.01622  19.0
## 158 149.8   1.3      24.3 145.80321  10.1
## 165 117.2  14.7       5.4 109.00876  11.9
## 168 206.8   5.2      19.4 115.37196  12.2
## 170 284.3  10.6       6.4 157.90011  15.0
## 175 222.4   3.4      13.1 144.52566  11.5
## 182 218.5   5.4      27.4 162.38749  12.2
## 183  56.2   5.7      29.7  42.19929   8.7

Construir el modelo

modelo_rm <- lm(data = datos.entrenamiento, formula = Sales ~ TV + Radio + Newspaper + Web)

summary(modelo_rm)
## 
## Call:
## lm(formula = Sales ~ TV + Radio + Newspaper + Web, data = datos.entrenamiento)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4172 -0.7633  0.1705  1.0893  3.1139 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.710666   0.457663   3.738 0.000272 ***
## TV           0.046002   0.001520  30.258  < 2e-16 ***
## Radio        0.204716   0.009043  22.639  < 2e-16 ***
## Newspaper   -0.004891   0.005964  -0.820 0.413610    
## Web          0.005880   0.001760   3.341 0.001075 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.531 on 137 degrees of freedom
## Multiple R-squared:  0.9183, Adjusted R-squared:  0.9159 
## F-statistic: 384.9 on 4 and 137 DF,  p-value: < 2.2e-16

Predicciones

predicciones <- predict(object = modelo_rm, newdata = datos.validacion)

Comparaciones

comparaciones <- data.frame(datos.validacion, predicciones)
comparaciones
##        TV Radio Newspaper       Web Sales predicciones
## 1   230.1  37.8      69.2 306.63475  22.1    21.498579
## 2    44.5  39.3      45.1 302.65307  10.4    13.362165
## 6     8.7  48.9      75.0  22.07240   7.2    11.884468
## 8   120.2  19.6      11.6 229.97146  13.2    12.548066
## 11   66.1   5.8      24.2  45.35903   8.6     6.087101
## 12  214.7  24.0       4.0 164.97176  17.4    17.450957
## 13   23.8  35.1      65.9  87.92109   9.2    10.185723
## 14   97.5   7.6       7.2 173.65804   9.7     8.737617
## 18  281.4  39.6      55.8  41.75531  24.4    22.734967
## 19   69.2  20.5      18.3 210.48991  11.3    10.238890
## 20  147.3  23.9      19.1 268.73538  14.6    14.866253
## 21  218.4  27.7      53.4  59.96055  18.0    17.519514
## 22  237.4   5.1      23.5 296.95207  12.5    15.306756
## 30   70.6  16.0      40.8  61.32436  10.5     8.394903
## 34  265.6  20.0       0.3  94.20726  17.4    18.575577
## 38   74.7  49.4      45.7  56.53622  14.7    15.368911
## 40  228.0  37.7      32.0 196.48327  21.5    20.915739
## 41  202.5  22.3      31.6  88.21282  16.6    15.955369
## 43  293.6  27.7       1.8 174.71682  20.7    21.906019
## 45   25.1  25.7      43.3 245.76441   8.5     9.359876
## 46  175.1  22.5      31.5  62.80926  14.9    14.586972
## 50   66.9  11.7      36.8 205.25350   9.7     8.210308
## 53  216.4  41.7      39.6 161.80251  22.6    20.959882
## 55  262.7  28.8      15.9 324.61518  20.2    21.522213
## 58  136.2  19.2      16.6  60.45435  13.2    12.180965
## 61   53.5   2.0      21.4  39.21715   8.1     4.707135
## 71  199.1  30.6      38.7 210.75214  18.3    18.183933
## 73   26.8  33.0      19.3 211.99091   8.8    10.851298
## 77   27.5   1.6      20.7 117.10193   6.9     3.890599
## 83   75.3  20.3      32.5 231.20983  11.3    10.530943
## 87   76.3  27.5      16.0 193.83089  12.0    11.911808
## 95  107.4  14.0      10.9 151.99073  11.5    10.357715
## 96  163.3  31.6      52.9 155.59488  16.9    16.347996
## 97  197.6   3.5       5.9 139.83054  11.7    12.310515
## 99  289.7  42.3      51.2 183.56958  25.4    24.525908
## 100 135.2  41.7      45.9  40.60035  17.2    16.481026
## 105 238.2  34.3       5.3 112.15549  20.7    20.323651
## 108  90.4   0.3      23.2 261.38088   8.7     7.354144
## 109  13.1   0.4      25.6 252.39135   5.3     3.754072
## 110 255.4  26.9       5.5 273.45413  19.8    20.547470
## 114 209.6  20.6      10.7  42.88380  15.9    15.769644
## 116  75.1  35.0      52.7 204.27671  12.6    13.273901
## 121 141.3  26.8      46.2  65.52546  15.5    13.856462
## 130  59.6  12.0      43.1 197.19655   9.7     7.857720
## 131   0.7  39.6       8.7 162.90259   1.6    10.764973
## 132 265.2   2.9      43.0 172.15666  12.7    15.306039
## 134 219.8  33.5      45.1 171.47802  19.6    19.467608
## 138 273.7  28.9      59.7 288.26061  20.8    21.620708
## 144 104.6   5.7      34.4 336.57109  10.4     9.500191
## 153 197.6  23.3      14.2 159.52256  16.6    16.439093
## 154 171.3  39.7      37.7 155.01622  19.0    18.445153
## 158 149.8   1.3      24.3 145.80321  10.1     9.606375
## 165 117.2  14.7       5.4 109.00876  11.9    10.725994
## 168 206.8   5.2      19.4 115.37196  12.2    12.871901
## 170 284.3  10.6       6.4 157.90011  15.0    17.856170
## 175 222.4   3.4      13.1 144.52566  11.5    13.423283
## 182 218.5   5.4      27.4 162.38749  12.2    13.688397
## 183  56.2   5.7      29.7  42.19929   8.7     5.565730

Evaluar predicciones

rmse <- rmse(actual = comparaciones$Sales, predicted = comparaciones$predicciones)
rmse
## [1] 1.980575

Graficar prediciones contra valores reales

ggplot(data = comparaciones) +
  geom_line(aes(x = 1:nrow(comparaciones), y = Sales), col='blue') +
  geom_line(aes(x = 1:nrow(comparaciones), y = predicciones), col='yellow') +
  ggtitle(label="Valores reales vs predichos Adverstising") 

Predicciones con datos nuevos

TV <- c(140, 160)
Radio <- c(60, 40)
Newspaper <- c(80, 90) 
Web <- c(120, 145)
  
nuevos <- data.frame(TV, Radio, Newspaper, Web)  
nuevos
##    TV Radio Newspaper Web
## 1 140    60        80 120
## 2 160    40        90 145
Y.predicciones <- predict(object = modelo_rm, newdata = nuevos)
Y.predicciones
##        1        2 
## 20.74824 17.67205

Interpretación

¿Cuál es el contexto de los datos?

Una empresa necesita conocer la relación de sus ventas con la cantidad de dinero invertido en distintos medios.

¿Cuántas observaciones se analizan y cuáles son las variables de interés?

Se tiene un total de 200 observaciones. Las variables de interés son TV, Radio, Newspaper, Web y Sales.

¿Cuáles son las variables independientes y dependientes?

Las variables independientes son TV, Radio, Newspaper y Web, la variable dependiente es Sales.

¿Cuál es el porcentaje de datos de entrenamiento y datos de validación ?

Se entrenará y validará con un 30% y 70% de los datos para el entrenamiento y la validación, respectivamente. La semilla a utilizar es 1550.

¿Son los coeficientes confiables al menos al 90% para hacer predicciones?

TV, Radio y Web tienen una confiabilidad mayor al 90%

¿Cuál nivel de confianza para cada coeficiente?

TV: 0.046002 con un 99.9999% Radio: 0.204716 con un 99.9999% Newspaper: 0.004891 con un 58.639% Web: 0.005880 con un 99.8925%

¿Que valor tiene el estadístico el R Square ajustado y que representa o qué significa?

Tiene un valor de 0.9159, el cual significa que el modelo tiene una certeza del 91.59%.

¿Cuál es el valor de RMSE y qué significaría este valor

Tiene un valor de 1.980575 y representa la cantidad de dispersión posible de entre los datos presentados.

¿Puede haber otro modelo más óptimo para estos datos?

Sí, este bien podría ser una regresión lineal múltiple con más de una variable dependiente o más variables independientes.

¿Que tan confiables son las predicciones con datos nuevos con este modelo y con estos datos?

Según los datos de correlación, el R Square y el RMSE, puedo concluir que este modelo, con la semilla 1550, tiene un grado de certeza muy alto, perfecto para su posterior uso en predicciones, simulaciones, etc.