# Load packages
# Core
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.0 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(tidyquant)
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
##
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
##
## Attaching package: 'xts'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
##
## Attaching package: 'PerformanceAnalytics'
##
## The following object is masked from 'package:graphics':
##
## legend
##
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
# Choose Stocks
symbols <- c("T", "DIS", "NVDA", "PG", "PSX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-01-01",
to = "2017-01-01")
asset_returns_tbl<- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 297 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 T 2012-01-31 -0.0131
## 2 T 2012-02-29 0.0393
## 3 T 2012-03-30 0.0207
## 4 T 2012-04-30 0.0710
## 5 T 2012-05-31 0.0376
## 6 T 2012-06-29 0.0427
## 7 T 2012-07-31 0.0779
## 8 T 2012-08-31 -0.0343
## 9 T 2012-09-28 0.0285
## 10 T 2012-10-31 -0.0708
## # … with 287 more rows
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = .3, binwidth = .01) +
facet_wrap("asset", ncol = 1) +
#Labeling
labs(title = "Distribution of Monthly Returns, 2012-2016",
y = "Frequency" ,
x = "Rate of Returns" ,
caption = "A typical monthly return is higher for T, PSX and DIS than for NVDA, and PG")