Se analizarán las siguientes bases de datos correspondientes y se responderan las preguntas correspondientes.
#file.choose()
bds <- read.csv("/Users/isaacdiazruizdechavez/Downloads/FORM - Scrap.csv")
bdm <- read.csv("/Users/isaacdiazruizdechavez/Downloads/FORM - Merma(1).csv")
bdm3 <- read.csv("/Users/isaacdiazruizdechavez/Downloads/FORM - Merma.csv")
bdp <- read.csv("/Users/isaacdiazruizdechavez/Downloads/Form_producción .csv")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#install.packages("psych")
library(psych)
describeData(bds, head=1, tail=1 )
## n.obs = 250 of which 250 are complete cases. Number of variables = 9 of which all are numeric FALSE
## variable # n.obs type
## Referencia* 1 250 3
## Fecha* 2 250 3
## Hora* 3 250 3
## Producto* 4 250 3
## Cantidad 5 250 1
## Unidad.de.medida* 6 250 3
## Ubicación.de.origen* 7 250 3
## Ubicación.de.desecho* 8 250 3
## Estado* 9 250 3
## H1
## Referencia* SP/08731
## Fecha* 31/08/2022
## Hora* 14:55:40
## Producto* [BACKFRAME 60% CUELLO ARMADO] 18805. 60% Backframe. Cuello Armado.
## Cantidad 2
## Unidad.de.medida* Unidad(es)
## Ubicación.de.origen* SAB/Calidad/Entrega de PT
## Ubicación.de.desecho* Virtual Locations/Scrapped
## Estado* Hecho
## T1
## Referencia* SP/08479
## Fecha* 01/08/2022
## Hora* 13:59:47
## Producto* [N61506747 TAPA] N61506747. Kit. Tapa.
## Cantidad 1
## Unidad.de.medida* Unidad(es)
## Ubicación.de.origen* SAB/Calidad/Entrega de PT
## Ubicación.de.desecho* Virtual Locations/Scrapped
## Estado* Hecho
Con la función anterior podemos observar que en la base de datos inicial se encuentran 250 registros completos en un total de 9 variables.
Variable<-c("Fecha","Cantidad","Ubicación de origen")
Type<-c("Cuantitativa (discreta)", "Cuantitativa(discreta)","Cuanlitativa")
table<-data.frame(Variable,Type)
knitr::kable(table)
| Variable | Type |
|---|---|
| Fecha | Cuantitativa (discreta) |
| Cantidad | Cuantitativa(discreta) |
| Ubicación de origen | Cuanlitativa |
Nota: Utilizar solamente las columnas necesarias para el análisis descriptivo.
Como primer técnica de limpieza de datos se eliminarán las columnas para únicamente tener las 3 variables de: Fecha, Cantidad y Unidad de origen.
bds1 <- bds
bds1<- subset(bds1, select = -c (Referencia, Producto, Unidad.de.medida, Hora, Ubicación.de.desecho, Estado))
Como segundo paso contabilizaremos cuantos NA´S hay en la base de datos para analizar qué hacer con eso.
sum(is.na(bds1))
## [1] 0
sum(is.na(bds))
## [1] 0
No hay NA´S dentro de las bases de datos por lo que no es necesario reemplazar con ningún dato.
bds2 <- table(bds1$Fecha)
knitr::kable(bds2)
| Var1 | Freq |
|---|---|
| 01/08/2022 | 2 |
| 02/08/2022 | 5 |
| 03/08/2022 | 13 |
| 04/08/2022 | 6 |
| 05/08/2022 | 7 |
| 06/08/2022 | 7 |
| 08/08/2022 | 4 |
| 09/08/2022 | 5 |
| 10/08/2022 | 13 |
| 11/08/2022 | 3 |
| 12/08/2022 | 12 |
| 13/08/2022 | 5 |
| 15/08/2022 | 6 |
| 16/08/2022 | 24 |
| 17/08/2022 | 9 |
| 19/08/2022 | 17 |
| 20/08/2022 | 9 |
| 22/08/2022 | 11 |
| 23/08/2022 | 1 |
| 24/08/2022 | 21 |
| 25/08/2022 | 11 |
| 26/08/2022 | 12 |
| 27/08/2022 | 12 |
| 29/08/2022 | 8 |
| 30/08/2022 | 17 |
| 31/08/2022 | 10 |
bds3 <- table(bds1$Ubicación.de.origen)
knitr::kable(bds3)
| Var1 | Freq |
|---|---|
| SAB/Calidad/Entrega de PT | 58 |
| SAB/Post-Production | 13 |
| SAB/Pre-Production | 179 |
bds4<-table(bds1$Fecha,bds1$Ubicación.de.origen)
knitr::kable(bds4)
| SAB/Calidad/Entrega de PT | SAB/Post-Production | SAB/Pre-Production | |
|---|---|---|---|
| 01/08/2022 | 2 | 0 | 0 |
| 02/08/2022 | 3 | 2 | 0 |
| 03/08/2022 | 4 | 0 | 9 |
| 04/08/2022 | 2 | 0 | 4 |
| 05/08/2022 | 2 | 1 | 4 |
| 06/08/2022 | 1 | 0 | 6 |
| 08/08/2022 | 0 | 1 | 3 |
| 09/08/2022 | 0 | 0 | 5 |
| 10/08/2022 | 2 | 1 | 10 |
| 11/08/2022 | 0 | 0 | 3 |
| 12/08/2022 | 2 | 1 | 9 |
| 13/08/2022 | 5 | 0 | 0 |
| 15/08/2022 | 1 | 5 | 0 |
| 16/08/2022 | 5 | 0 | 19 |
| 17/08/2022 | 0 | 0 | 9 |
| 19/08/2022 | 0 | 0 | 17 |
| 20/08/2022 | 0 | 0 | 9 |
| 22/08/2022 | 3 | 1 | 7 |
| 23/08/2022 | 0 | 1 | 0 |
| 24/08/2022 | 5 | 0 | 16 |
| 25/08/2022 | 4 | 0 | 7 |
| 26/08/2022 | 7 | 0 | 5 |
| 27/08/2022 | 1 | 0 | 11 |
| 29/08/2022 | 2 | 0 | 6 |
| 30/08/2022 | 4 | 0 | 13 |
| 31/08/2022 | 3 | 0 | 7 |
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
pie(prop.table(table(bds1$Ubicación.de.origen)),col=c("lightgreen","blue","red"),main="Ubicación de origen",las=1)
hist(bds1$Cantidad)
bds1$Fecha<- as.Date(bds1$Fecha,format = "%d/%m/%Y")
plot(bds1$Fecha, bds1$Cantidad)
library(dplyr)
#install.packages("psych")
library(psych)
describeData(bdm, head=1, tail=1 )
## n.obs = 60 of which 60 are complete cases. Number of variables = 3 of which all are numeric FALSE
## variable # n.obs type H1 T1
## Fecha* 1 60 3 11/01/22
## Mes* 2 60 3 ENERO Total general
## Kilos* 3 60 3 5080 185,426
Podemos observar que en la base de datos inicial se encuentran 50 registros completos en un total de 3 variables.
Variable<-c("Fecha","Kilos")
Type<-c("Cuantitativa (continua)", "Cuantitativa(continua)")
table<-data.frame(Variable,Type)
knitr::kable(table)
| Variable | Type |
|---|---|
| Fecha | Cuantitativa (continua) |
| Kilos | Cuantitativa(continua) |
Nota: Utilizar solamente las columnas necesarias para el análisis descriptivo.
Como primer técnica de limpieza de datos se eliminarán las columnas para únicamente tener las 2 variables de: Fecha, y Kilos.
bdm1 <- bdm
bdm1<- subset(bdm1, select = -c (Mes))
Como segundo paso eliminaremos los renglones donde tenemos datos
bdm2 <- bdm1
bdm2 <- bdm2[ -c (5, 12, 19, 25, 31, 36, 42, 54, 59, 60),]
Convertimos la columna de fecha a fecha
as.Date(bdm2$Fecha)
## [1] "0011-01-22" "0011-01-22" "0022-01-22" "0022-01-22" "0018-02-22"
## [6] "0018-02-22" "0018-02-22" "0018-02-22" "0018-02-22" "0024-02-22"
## [11] "0003-03-22" "0008-03-22" "0011-03-22" "0016-03-22" "0023-03-22"
## [16] "0030-03-22" "0004-04-22" "0011-04-22" "0014-04-22" "0021-04-22"
## [21] "0027-04-22" "0002-05-22" "0009-05-22" "0014-05-22" "0024-05-22"
## [26] "0025-05-22" "0007-06-22" "0015-06-22" "0020-06-22" "0027-06-22"
## [31] "0004-07-22" "0011-07-22" "0016-07-22" "0021-07-22" "0027-07-22"
## [36] "0008-08-22" "0010-08-22" "0011-08-22" "0013-08-22" "0015-08-22"
## [41] "0022-08-22" "0029-08-22" "0029-08-22" "0030-08-22" "0031-08-22"
## [46] "0031-08-22" "0005-09-22" "0007-09-22" "0015-09-22" "0021-09-22"
class(bdm2$Fecha)
## [1] "character"
media <- mean(bdm3$Kilos)
media
## [1] 3708.52
mediana <- median(bdm3$Kilos)
mode <- function (x) {
ux <- unique(x)
ux [which.max(tabulate(match(x,ux)))]
}
mode <- mode(bdm3$Kilos)
mode
## [1] 3810
hist(bdm3$Kilos)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
ggplot(bdm3, aes(x= Fecha, y= Kilos)) +
geom_bar(stat="identity", fill="red") + scale_fill_grey() + # Add bars to the plot
labs(title = "Kilos de merma", # Add a title
x = "Fecha")
ggplot(bdm3, aes(x= media, y= Mes)) +
geom_bar(stat="identity", fill="red") + scale_fill_grey() + # Add bars to the plot
labs(title = "Kilos de merma", # Add a title
x = "Fecha")
bdm3$Fecha <- as.Date(bdm3$Fecha, format = "%d/%m/%Y")
plot(bdm3$Fecha, bdm3$Kilos, main = "Kilos de merma",
xlab = "Fecha", ylab = "Kilos",
pch = 19, frame = FALSE)
library(dplyr)
#install.packages("psych")
library(psych)
describeData(bdp, head=1, tail=1 )
## n.obs = 2568 of which 39 are complete cases. Number of variables = 17 of which all are numeric FALSE
## variable # n.obs type H1
## No. 1 2560 1 1
## CLIENTE* 2 2568 3 VARROC
## ID.FORM* 3 2568 3 VL-017-13938
## PRODUCTO* 4 2568 3 763 . KIT. CAJA.
## FECHA* 5 2568 3 01/08/22
## PIEZAS.PROG.* 6 2568 3 199
## TMO..MIN.* 7 2568 3 15
## HR..FIN* 8 2568 3 09:15:00
## ESTACION.ARRANQUE* 9 2568 3 C1
## Laminas.procesadas 10 1975 1 201
## INICIO.SEP.UP* 11 2568 3 09:00:00
## fin.de.set.up* 12 2568 3 09:12:00
## INICIO.de.PROCESO* 13 2568 3 09:13:00
## FIN.de.PROCESO* 14 2568 3 09:26:00
## TIEMPO.CALIDAD* 15 2568 3 1
## TIEMPO.MATERIALES 16 325 1 <NA>
## MERMAS.Maquinas. 17 107 1 <NA>
## T1
## No. 110
## CLIENTE* TRMX
## ID.FORM* TR-059-18268.
## PRODUCTO* U725. DMS. ITB. CHAROLA. ST0314 ( 50.5 c.m. x 178 c.m.) 1 Golpe = 2 Charolas. ( 1 Pieza). ( Id: 18267).
## FECHA* 31/08/2022
## PIEZAS.PROG.* 100
## TMO..MIN.* 25
## HR..FIN* 07:55:00
## ESTACION.ARRANQUE* TROQUEL
## Laminas.procesadas <NA>
## INICIO.SEP.UP*
## fin.de.set.up*
## INICIO.de.PROCESO*
## FIN.de.PROCESO*
## TIEMPO.CALIDAD*
## TIEMPO.MATERIALES <NA>
## MERMAS.Maquinas. <NA>
Variable <-c("No.", "Cliente","ID Form","Producto", "Fecha", "Piezas Prog", "Tiempo Min", "Hora Fin", "Estación Arranque", "Laminas procesadas", "Inicio Sep up", "Fin Inicio Sep up", "Inicio proceso", "Fin de proceso", "Tiempo calidad", "Tiempo materiales", "Mermas máquinas")
Tipo <-c("Cuantitativa (discreta)", "Cualitativa (nominal)", "Cualitativa (nominal)", "Cualitativa (nominal)", "Cuantitativa (continua)", "Cuantitativa (discreta)", "Cuantitativa (discreta)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (discreta)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (discreta)", "Cuantitativa (discreta)", "Cuantitativa (discreta)")
table<-data.frame(Variable, Tipo)
knitr::kable(table)
| Variable | Tipo |
|---|---|
| No. | Cuantitativa (discreta) |
| Cliente | Cualitativa (nominal) |
| ID Form | Cualitativa (nominal) |
| Producto | Cualitativa (nominal) |
| Fecha | Cuantitativa (continua) |
| Piezas Prog | Cuantitativa (discreta) |
| Tiempo Min | Cuantitativa (discreta) |
| Hora Fin | Cuantitativa (continua) |
| Estación Arranque | Cuantitativa (continua) |
| Laminas procesadas | Cuantitativa (discreta) |
| Inicio Sep up | Cuantitativa (continua) |
| Fin Inicio Sep up | Cuantitativa (continua) |
| Inicio proceso | Cuantitativa (continua) |
| Fin de proceso | Cuantitativa (continua) |
| Tiempo calidad | Cuantitativa (discreta) |
| Tiempo materiales | Cuantitativa (discreta) |
| Mermas máquinas | Cuantitativa (discreta) |
Variable <-c("No.", "Cliente","ID Form","Producto", "Fecha", "Piezas Prog", "Tiempo Min", "Hora Fin", "Estación Arranque", "Laminas procesadas*", "Inicio Sep up", "Fin Inicio Sep up", "Inicio proceso", "Fin de proceso", "Tiempo calidad", "Tiempo materiales", "Mermas máquinas")
Medicion <-c("Razón", "Nominal", "Nominal", "Nominal", "Intervalo", "Razón", "Razón", "Intervalo","Intervalo", "Razón", "Intervalo", "Intervalo", "Intervalo", "Intervalo", "Razón", "Razón", "Razón")
table2<-data.frame(Variable, Medicion)
knitr::kable(table2)
| Variable | Medicion |
|---|---|
| No. | Razón |
| Cliente | Nominal |
| ID Form | Nominal |
| Producto | Nominal |
| Fecha | Intervalo |
| Piezas Prog | Razón |
| Tiempo Min | Razón |
| Hora Fin | Intervalo |
| Estación Arranque | Intervalo |
| Laminas procesadas* | Razón |
| Inicio Sep up | Intervalo |
| Fin Inicio Sep up | Intervalo |
| Inicio proceso | Intervalo |
| Fin de proceso | Intervalo |
| Tiempo calidad | Razón |
| Tiempo materiales | Razón |
| Mermas máquinas | Razón |
bdp1 <- bdp
bdp1<- subset(bdp1, select = -c (No., ID.FORM, PRODUCTO, FECHA, HR..FIN, ESTACION.ARRANQUE, INICIO.SEP.UP, fin.de.set.up, INICIO.de.PROCESO, FIN.de.PROCESO, TIEMPO.MATERIALES, MERMAS.Maquinas.))
Como primer técnica se eliminaron las columnas que no aportan información de valor para el análisis de la base de datos. Son 5 las variables que se tomarán en cuenta para el análisis que se realizará.
sum(is.na(bdp))
## [1] 5305
sum(is.na(bdp1))
## [1] 593
Se contabilizan un total de 593 NA´S en la base de datos por lo que se aplicarán las técnicas de limpieza de Eliminar los NA´S y como en la base de datos hay datos faltantes que R no nos marca como NA´s, manualmente eliminaremos esos renglones con el filtro de que los valores menores a 0 serán eliminados, dicha técnica aplicada con el fin de aprovechar la base de datos con los datos relevantes.
bdp2<- bdp1
bdp2 <- na.omit(bdp2)
bdp3 <- bdp2
bdp3 <- bdp3[bdp3$TMO..MIN. > 0, ]
bdp4 <- bdp3
bdp4 <- table(bdp4$CLIENTE)
knitr::kable(bdp4)
| Var1 | Freq |
|---|---|
| DENSO | 166 |
| HELLA | 61 |
| MERIDIAN LIGHTWEIGHT | 31 |
| STABILUS 1 | 507 |
| STABILUS 3 | 222 |
| STABILUS 3. | 17 |
| TRMX | 221 |
| VARROC | 129 |
| YANFENG | 230 |
bdp5 <- bdp3
bdp5 <- table(bdp5$TIEMPO.CALIDAD)
knitr::kable(bdp5)
| Var1 | Freq |
|---|---|
| 44 | |
| 0 | 132 |
| 1 | 1314 |
| 1.40 | 1 |
| 10 | 6 |
| 10:04 | 1 |
| 10:17 | 1 |
| 11 | 4 |
| 11:22 | 1 |
| 11:43 | 1 |
| 12:30 | 1 |
| 17 | 1 |
| 2 | 49 |
| 21 | 1 |
| 22 | 1 |
| 25 | 1 |
| 3 | 9 |
| 4 | 1 |
| 5 | 6 |
| 7 | 3 |
| 8 | 1 |
| 8:18 | 1 |
| 8:38 | 1 |
| 9 | 2 |
| 9:05 | 1 |
cruzada <-table(bdp3$CLIENTE,bdp3$Laminas.procesadas)
knitr::kable(cruzada)
| 0 | 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 64 | 65 | 66 | 67 | 69 | 70 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 89 | 90 | 91 | 92 | 95 | 97 | 98 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 116 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 126 | 130 | 132 | 134 | 136 | 137 | 138 | 139 | 140 | 141 | 143 | 144 | 146 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 158 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 170 | 171 | 173 | 174 | 178 | 180 | 181 | 184 | 185 | 187 | 190 | 193 | 194 | 196 | 197 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 215 | 216 | 219 | 225 | 227 | 228 | 229 | 233 | 236 | 240 | 241 | 242 | 243 | 246 | 247 | 248 | 252 | 253 | 278 | 286 | 298 | 300 | 301 | 302 | 303 | 304 | 306 | 308 | 310 | 313 | 322 | 326 | 328 | 330 | 335 | 336 | 339 | 344 | 347 | 352 | 354 | 356 | 358 | 368 | 370 | 375 | 376 | 377 | 378 | 380 | 384 | 386 | 387 | 390 | 391 | 396 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 410 | 412 | 414 | 426 | 436 | 437 | 438 | 439 | 450 | 452 | 456 | 502 | 503 | 505 | 519 | 572 | 577 | 582 | 584 | 600 | 602 | 605 | 608 | 609 | 688 | 740 | 741 | 752 | 766 | 772 | 773 | 789 | 790 | 799 | 801 | 802 | 1022 | 1124 | 1125 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DENSO | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 1 | 6 | 1 | 1 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| HELLA | 12 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 1 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 4 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MERIDIAN LIGHTWEIGHT | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| STABILUS 1 | 29 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 14 | 1 | 5 | 1 | 1 | 2 | 4 | 0 | 0 | 1 | 7 | 0 | 0 | 0 | 3 | 5 | 10 | 1 | 1 | 3 | 2 | 0 | 1 | 2 | 1 | 3 | 3 | 0 | 1 | 5 | 4 | 1 | 0 | 4 | 1 | 1 | 0 | 6 | 25 | 19 | 2 | 1 | 4 | 1 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 8 | 9 | 42 | 9 | 7 | 2 | 0 | 1 | 0 | 0 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 5 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 7 | 9 | 79 | 22 | 8 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 4 | 2 | 5 | 1 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| STABILUS 3 | 33 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 6 | 2 | 4 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 9 | 7 | 2 | 0 | 0 | 1 | 1 | 10 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 18 | 28 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 5 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 9 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| STABILUS 3. | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TRMX | 32 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 15 | 4 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 15 | 7 | 17 | 4 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 1 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 12 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| VARROC | 6 | 1 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 0 | 1 | 3 | 2 | 1 | 0 | 2 | 5 | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 2 | 3 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 4 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| YANFENG | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 6 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 5 | 5 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 5 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 5 | 2 | 0 | 1 | 2 | 1 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 2 | 2 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 0 |
ggplot(bdp3, aes(x= Laminas.procesadas , y= TMO..MIN.)) +
geom_bar(stat="identity", fill="red") + scale_fill_grey() + # Add bars to the plot
labs(title = "Kilos de merma", # Add a title
x = "Fecha")
hist(bdp3$Laminas.procesadas)
plot(bdp3$PIEZAS.PROG., bdp3$TMO..MIN., main = "Fecha de ingreso con salario diario",
xlab = "Fecha de ingreso", ylab = "Salario",
pch = 19, frame = FALSE)
## Warning in xy.coords(x, y, xlabel, ylabel, log): NAs introduced by coercion
## Warning in xy.coords(x, y, xlabel, ylabel, log): NAs introduced by coercion
El analizar la gráfica de merma en kilos nos permite ver que normalmente la cantidad es constante dentro de un cierto rango, a excepción de las bajas presentadas en Septiembre. Una propuesta para FORM podría ser el analizar por medio de gráficos que logren conectar una mayor cantidad de variables y poder predecir la cantidad de merma para desarrollar proyectos en donde se pueda utilizar la misma. Como un llamativo, el poder cuantificar la merma que puede ser reutilizada o aprovechada y la que definitivamente no se puede utilizar para nada.
Como segunda propuesta y después de realizar un análisis a la base de datos de producción, pudimos ver que el tiempo de calidad es por lo general 1, no obstante, existen 63 casos en el que ha excedido este número, en un rango de 2 a 22. Asegurar que el tiempo no excede ya sea 2, o en caso de ser ópitmo un rango inferior, para asegurar los tiempos de calidad.
La actividad nos permitió analizar bases de datos con un acercamiento real a la empresa FORM, en donde pudimos detectar áreas de oportunidad al momento de analizarlas, limpiarlas y darles el formato necesario para su manipulación en programas como R. El órden y relevancia de las variables al momento de tabular y visualizar datos es esencial y se detectó la importancia de conocer los formatos de programación al momento de manejar una base de datos sobre todo desde excel; donde pequeños y grandes errores pueden alentar y pausar el análisis de la información.
se trabajó con tres bases de datos y se realizó el análisis estadístico descriptivo para poder juntar los datos necesarios para conocer y ver de una manera más visual la situación de FORM.