bd_prod <- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/Base de datos FORM/FORM_Producción_C.csv")
bd_merma <- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/Base de datos FORM/FORM - Merma1.csv")
bd_scrap <- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/Base de datos FORM/FORM - Scrap.csv")
La base de datos cuenta con 17 variables y 2568 registros.
Variable <-c("No.", "Cliente","ID Form","Producto", "Fecha", "Piezas Prog", "Tiempo Min", "Hora Fin", "Estación Arranque", "Laminas procesadas", "Inicio Sep up", "Fin Inicio Sep up", "Inicio proceso", "Fin de proceso", "Tiempo calidad", "Tiempo materiales", "Mermas máquinas")
Tipo <-c("Cuantitativa (discreta)", "Cualitativa (nominal)", "Cualitativa (nominal)", "Cualitativa (nominal)", "Cuantitativa (continua)", "Cuantitativa (discreta)", "Cuantitativa (discreta)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (discreta)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cuantitativa (discreta)", "Cuantitativa (discreta)", "Cuantitativa (discreta)")
table<-data.frame(Variable, Tipo)
knitr::kable(table)
| Variable | Tipo |
|---|---|
| No. | Cuantitativa (discreta) |
| Cliente | Cualitativa (nominal) |
| ID Form | Cualitativa (nominal) |
| Producto | Cualitativa (nominal) |
| Fecha | Cuantitativa (continua) |
| Piezas Prog | Cuantitativa (discreta) |
| Tiempo Min | Cuantitativa (discreta) |
| Hora Fin | Cuantitativa (continua) |
| Estación Arranque | Cuantitativa (continua) |
| Laminas procesadas | Cuantitativa (discreta) |
| Inicio Sep up | Cuantitativa (continua) |
| Fin Inicio Sep up | Cuantitativa (continua) |
| Inicio proceso | Cuantitativa (continua) |
| Fin de proceso | Cuantitativa (continua) |
| Tiempo calidad | Cuantitativa (discreta) |
| Tiempo materiales | Cuantitativa (discreta) |
| Mermas máquinas | Cuantitativa (discreta) |
Variable <-c("No.", "Cliente","ID Form","Producto", "Fecha", "Piezas Prog", "Tiempo Min", "Hora Fin", "Estación Arranque", "Laminas procesadas*", "Inicio Sep up", "Fin Inicio Sep up", "Inicio proceso", "Fin de proceso", "Tiempo calidad", "Tiempo materiales", "Mermas máquinas")
Medicion <-c("Razón", "Nominal", "Nominal", "Nominal", "Intervalo", "Razón", "Razón", "Intervalo","Intervalo", "Razón", "Intervalo", "Intervalo", "Intervalo", "Intervalo", "Razón", "Razón", "Razón")
table2<-data.frame(Variable, Medicion)
knitr::kable(table2)
| Variable | Medicion |
|---|---|
| No. | Razón |
| Cliente | Nominal |
| ID Form | Nominal |
| Producto | Nominal |
| Fecha | Intervalo |
| Piezas Prog | Razón |
| Tiempo Min | Razón |
| Hora Fin | Intervalo |
| Estación Arranque | Intervalo |
| Laminas procesadas* | Razón |
| Inicio Sep up | Intervalo |
| Fin Inicio Sep up | Intervalo |
| Inicio proceso | Intervalo |
| Fin de proceso | Intervalo |
| Tiempo calidad | Razón |
| Tiempo materiales | Razón |
| Mermas máquinas | Razón |
Se realizó una limpia previa a la base de datos debido a que no se podía manejar en R, ya que el formato en que se encontraba no permitía que R pudiera entender cuales eran las variables de nuestra base de datos, después pasamos a las técnicas que podemos utilizar en R, como lo fue la técnica de Remover valores irrelevantes, para sacar provecho de la base de datos, solo necesitamos de cinco variables valiosas que son: Cliente, Piezas programadas, Tiempo mínimo, Láminas procesadas y Tiempo Calidad, también borramos renglones que tuvieran valor 0, la segunda técnica fue Valores Faltantes, donde quitamos todos los NA’s de la base de datos y por último la tercera tecnica utilizada fue Convertir tipos de datos que convertimos la fecha de caracter a entero.
#### Técnica. Remover valores irrelevantes
#### Eliminar columnas
summary(bd_prod)
## no cliente id.form producto
## Min. : 1.0 Length:2568 Length:2568 Length:2568
## 1st Qu.: 25.0 Class :character Class :character Class :character
## Median : 50.0 Mode :character Mode :character Mode :character
## Mean : 50.8
## 3rd Qu.: 75.0
## Max. :121.0
## NA's :8
## fecha piezas.prog tiempo.min hora.fin
## Length:2568 Min. : 1 Length:2568 Length:2568
## Class :character 1st Qu.: 100 Class :character Class :character
## Mode :character Median : 192 Mode :character Mode :character
## Mean : 1744
## 3rd Qu.: 240
## Max. :36625
## NA's :1
## estacion_arranque laminas_procesadas inicio_sep_up fin_sep_up
## Length:2568 Min. : 0.0 Length:2568 Length:2568
## Class :character 1st Qu.: 0.5 Class :character Class :character
## Mode :character Median : 60.0 Mode :character Mode :character
## Mean : 108.9
## 3rd Qu.: 200.0
## Max. :1125.0
## NA's :593
## inicio_proceso fin_proceso tiempo_calidad tiempo_materiales
## Length:2568 Length:2568 Length:2568 Min. : 0.000
## Class :character Class :character Class :character 1st Qu.: 0.000
## Mode :character Mode :character Mode :character Median : 0.000
## Mean : 2.535
## 3rd Qu.: 1.000
## Max. :48.000
## NA's :2243
## mermas_maquinas
## Min. : 0.000
## 1st Qu.: 0.000
## Median : 1.000
## Mean : 1.626
## 3rd Qu.: 1.000
## Max. :50.000
## NA's :2461
bd_prod2 <- bd_prod
bd_prod2 <- subset (bd_prod2, select = -c (no, id.form, producto, hora.fin, estacion_arranque, inicio_sep_up, fin_sep_up, inicio_proceso, fin_proceso, tiempo_materiales, mermas_maquinas))
#### Eliminar renglones
bd_prod2 <- bd_prod2[bd_prod2$tiempo.min > 0, ]
#### Técnica. Valores faltantes
#### ¿Cuántos NA tengo en la base de datos?
sum(is.na(bd_prod2))
## [1] 244
sum(is.na(bd_prod))
## [1] 5306
#### ¿Cuántos NA tengo por variable?
sapply(bd_prod2, function(x) sum(is.na(x)))
## cliente fecha piezas.prog tiempo.min
## 0 0 0 0
## laminas_procesadas tiempo_calidad
## 244 0
sapply(bd_prod, function(x) sum(is.na(x)))
## no cliente id.form producto
## 8 0 0 0
## fecha piezas.prog tiempo.min hora.fin
## 0 1 0 0
## estacion_arranque laminas_procesadas inicio_sep_up fin_sep_up
## 0 593 0 0
## inicio_proceso fin_proceso tiempo_calidad tiempo_materiales
## 0 0 0 2243
## mermas_maquinas
## 2461
?sapply
#### Borrar todos los registros NA de una tabla
bd_prod3 <- bd_prod2
bd_prod3 <- na.omit(bd_prod3)
summary(bd_prod3)
## cliente fecha piezas.prog tiempo.min
## Length:1584 Length:1584 Min. : 1 Length:1584
## Class :character Class :character 1st Qu.: 100 Class :character
## Mode :character Mode :character Median : 200 Mode :character
## Mean : 1875
## 3rd Qu.: 208
## Max. :36625
## laminas_procesadas tiempo_calidad
## Min. : 0.0 Length:1584
## 1st Qu.: 37.0 Class :character
## Median : 101.0 Mode :character
## Mean : 132.6
## 3rd Qu.: 202.0
## Max. :1125.0
#### Técnica. Convertir tipos de datos
#### Convertir de caracter a fecha
bd_prod4 <- bd_prod3
bd_prod4$fecha <- as.Date(bd_prod4$fecha, format ="%d/%m/%y")
bd_prod4 <- bd_prod3
bd_prod4$tiempo.min<- substr(bd_prod4$tiempo.min, start = 1, stop = 2)
bd_prod4$tiempo.min <- as.integer(bd_prod4$tiempo.min)
## Warning: NAs introduced by coercion
str(bd_prod4)
## 'data.frame': 1584 obs. of 6 variables:
## $ cliente : chr "VARROC" "VARROC" "VARROC" "DENSO" ...
## $ fecha : chr "01/08/22" "01/08/22" "01/08/22" "01/08/22" ...
## $ piezas.prog : int 199 57 68 192 192 400 80 104 104 160 ...
## $ tiempo.min : int 15 10 10 15 15 30 15 15 15 20 ...
## $ laminas_procesadas: int 201 116 69 49 49 801 41 53 53 55 ...
## $ tiempo_calidad : chr "1" "1" "1" "1" ...
## - attr(*, "na.action")= 'omit' Named int [1:244] 77 78 79 80 81 82 99 101 102 104 ...
## ..- attr(*, "names")= chr [1:244] "106" "107" "108" "109" ...
bd_prod5 <- bd_prod4
write.csv(bd_prod5, file ="producción_FORM_limpia.csv", row.names = FALSE)
library(foreign)
library(dplyr) # data manipulation
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(forcats) # to work with categorical variables
library(ggplot2) # data visualization
library(janitor) # data exploration and cleaning
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
# install.packages("psych")
library(corrplot) # correlation plots
## corrplot 0.92 loaded
library(lmtest) # diagnostic checks - linear regression analysis
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(car) # diagnostic checks - linear regression analysis
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
Cliente <-table(bd_prod5$cliente)
Cliente
##
## DENSO HELLA MERIDIAN LIGHTWEIGHT
## 166 61 31
## STABILUS 1 STABILUS 3 TRMX
## 507 239 221
## VARROC YANFENG
## 129 230
knitr::kable(Cliente)
| Var1 | Freq |
|---|---|
| DENSO | 166 |
| HELLA | 61 |
| MERIDIAN LIGHTWEIGHT | 31 |
| STABILUS 1 | 507 |
| STABILUS 3 | 239 |
| TRMX | 221 |
| VARROC | 129 |
| YANFENG | 230 |
cruzadaP1 <-table(bd_prod5$cliente,bd_prod5$laminas_procesadas)
knitr::kable(cruzadaP1)
| 0 | 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 64 | 65 | 66 | 67 | 69 | 70 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 89 | 90 | 91 | 92 | 95 | 97 | 98 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 116 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 126 | 130 | 132 | 134 | 136 | 137 | 138 | 139 | 140 | 141 | 143 | 144 | 146 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 158 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 170 | 171 | 173 | 174 | 178 | 180 | 181 | 184 | 185 | 187 | 190 | 193 | 194 | 196 | 197 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 215 | 216 | 219 | 225 | 227 | 228 | 229 | 233 | 236 | 240 | 241 | 242 | 243 | 246 | 247 | 248 | 252 | 253 | 278 | 286 | 298 | 300 | 301 | 302 | 303 | 304 | 306 | 308 | 310 | 313 | 322 | 326 | 328 | 330 | 335 | 336 | 339 | 344 | 347 | 352 | 354 | 356 | 358 | 368 | 370 | 375 | 376 | 377 | 378 | 380 | 384 | 386 | 387 | 390 | 391 | 396 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 410 | 412 | 414 | 426 | 436 | 437 | 438 | 439 | 450 | 452 | 456 | 502 | 503 | 505 | 519 | 572 | 577 | 582 | 584 | 600 | 602 | 605 | 608 | 609 | 688 | 740 | 741 | 752 | 766 | 772 | 773 | 789 | 790 | 799 | 801 | 802 | 1022 | 1124 | 1125 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DENSO | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 1 | 6 | 1 | 1 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| HELLA | 12 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 1 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 4 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MERIDIAN LIGHTWEIGHT | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| STABILUS 1 | 29 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 14 | 1 | 5 | 1 | 1 | 2 | 4 | 0 | 0 | 1 | 7 | 0 | 0 | 0 | 3 | 5 | 10 | 1 | 1 | 3 | 2 | 0 | 1 | 2 | 1 | 3 | 3 | 0 | 1 | 5 | 4 | 1 | 0 | 4 | 1 | 1 | 0 | 6 | 25 | 19 | 2 | 1 | 4 | 1 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 8 | 9 | 42 | 9 | 7 | 2 | 0 | 1 | 0 | 0 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 5 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 7 | 9 | 79 | 22 | 8 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 4 | 2 | 5 | 1 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| STABILUS 3 | 37 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 6 | 2 | 4 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 9 | 7 | 2 | 0 | 0 | 1 | 1 | 10 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 19 | 32 | 13 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 5 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 9 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TRMX | 32 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 15 | 4 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 15 | 7 | 17 | 4 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 1 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 12 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| VARROC | 6 | 1 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 0 | 1 | 3 | 2 | 1 | 0 | 2 | 5 | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 2 | 3 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 4 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| YANFENG | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 6 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 5 | 5 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 5 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 5 | 2 | 0 | 1 | 2 | 1 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 2 | 2 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 0 |
cruzadaP2 <-table(bd_prod5$tiempo.min,bd_prod5$laminas_procesadas)
knitr::kable(cruzadaP2)
| 0 | 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 64 | 65 | 66 | 67 | 69 | 70 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 89 | 90 | 91 | 92 | 95 | 97 | 98 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 116 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 126 | 130 | 132 | 134 | 136 | 137 | 138 | 139 | 140 | 141 | 143 | 144 | 146 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 158 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 170 | 171 | 173 | 174 | 178 | 180 | 181 | 184 | 185 | 187 | 190 | 193 | 194 | 196 | 197 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 215 | 216 | 219 | 225 | 227 | 228 | 229 | 233 | 236 | 240 | 241 | 242 | 243 | 246 | 247 | 248 | 252 | 253 | 278 | 286 | 298 | 300 | 301 | 302 | 303 | 304 | 306 | 308 | 310 | 313 | 322 | 326 | 328 | 330 | 335 | 336 | 339 | 344 | 347 | 352 | 354 | 356 | 358 | 368 | 370 | 375 | 376 | 377 | 378 | 380 | 384 | 386 | 387 | 390 | 391 | 396 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 410 | 412 | 414 | 426 | 436 | 437 | 438 | 439 | 450 | 452 | 456 | 502 | 503 | 505 | 519 | 572 | 577 | 582 | 584 | 600 | 602 | 605 | 608 | 609 | 688 | 740 | 741 | 752 | 766 | 772 | 773 | 789 | 790 | 799 | 801 | 802 | 1022 | 1124 | 1125 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 26 | 3 | 2 | 1 | 4 | 3 | 1 | 2 | 5 | 2 | 19 | 4 | 10 | 1 | 3 | 6 | 8 | 2 | 1 | 5 | 19 | 1 | 1 | 2 | 3 | 8 | 12 | 1 | 3 | 3 | 6 | 6 | 5 | 3 | 2 | 4 | 5 | 9 | 3 | 8 | 3 | 1 | 0 | 5 | 5 | 2 | 0 | 8 | 29 | 7 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 7 | 1 | 1 | 1 | 5 | 1 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 1 | 1 | 6 | 4 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15 | 10 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 7 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 7 | 6 | 7 | 3 | 1 | 2 | 2 | 7 | 0 | 0 | 3 | 1 | 8 | 1 | 1 | 3 | 0 | 1 | 1 | 4 | 1 | 0 | 12 | 20 | 18 | 11 | 3 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 11 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 6 | 1 | 1 | 2 | 0 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 4 | 11 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 20 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 0 | 0 | 2 | 5 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 11 | 1 | 1 | 5 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 3 | 0 | 1 | 4 | 23 | 14 | 6 | 0 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 6 | 2 | 2 | 1 | 2 | 0 | 1 | 2 | 0 | 3 | 1 | 1 | 0 | 6 | 1 | 2 | 0 | 0 | 0 | 0 | 4 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 3 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 5 | 0 | 2 | 1 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 25 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 18 | 5 | 13 | 0 | 2 | 2 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 6 | 11 | 106 | 58 | 28 | 8 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 1 | 2 | 1 | 2 | 6 | 1 | 1 | 0 | 3 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 30 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 35 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | 10 | 5 | 1 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 40 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 8 | 6 | 5 | 2 | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 0 | 0 | 0 |
| 45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 5 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 60 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 70 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
barplot(prop.table(table(bd_prod5$cliente)),col=c("orange","blue","red","green"),main="Clientes", ylab ="Frecuencias",las=1)
hist(bd_prod5$piezas.prog, main = "Frecuencia de piezas que se programan", xlab = "Piezas", ylab = "Frecuencia",col = "blue")
hist(bd_prod5$laminas_procesadas, main = "Frecuencia de las láminas procesadas", xlab = "Láminas", ylab = "Frecuencia",col = "orange")
plot(bd_prod5$tiempo_calidad, bd_prod5$tiempo.min, main = "Tiempo calidad por minutos", xlab = "Tiempo calidad", ylab = "Tiempo min")
## Warning in xy.coords(x, y, xlabel, ylabel, log): NAs introduced by coercion
ggplot(data=bd_prod5, mapping = aes(piezas.prog, laminas_procesadas)) + geom_point(aes(color = tiempo.min)) + theme_bw()
boxplot(bd_prod5$laminas_procesadas , vertical = TRUE)
La base de datos cuenta con 9 variables y 250 registros.
Variable <-c("Referencia", "Fecha", "Hora", "Producto", "Cantidad", "Unidad de medida", "Ubicación de origen", "Ubicación de desecho", "Estado")
Tipo <-c("Cualitativa (nominal)", "Cuantitativa (continua)", "Cuantitativa (continua)", "Cualitativa (nominal)", "Cuantitativa (discreta)", "Cualitativa (nominal)", "Cualitativa (nominal)", "Cualitativa (nominal)","Cualitativa (nominal)")
table3<-data.frame(Variable, Tipo)
knitr::kable(table3)
| Variable | Tipo |
|---|---|
| Referencia | Cualitativa (nominal) |
| Fecha | Cuantitativa (continua) |
| Hora | Cuantitativa (continua) |
| Producto | Cualitativa (nominal) |
| Cantidad | Cuantitativa (discreta) |
| Unidad de medida | Cualitativa (nominal) |
| Ubicación de origen | Cualitativa (nominal) |
| Ubicación de desecho | Cualitativa (nominal) |
| Estado | Cualitativa (nominal) |
Variables <-c("Referencia", "Fecha", "Hora", "Producto", "Cantidad", "Unidad de medida", "Ubicación de origen", "Ubicación de desecho", "Estado")
Medicion <-c("Nominal", "Intervalo", "Intevalo", "Nominal", "Razón", "Nominal", "Nominal","Nominal", "Nominal")
table4 <-data.frame(Variables, Medicion)
knitr::kable(table4)
| Variables | Medicion |
|---|---|
| Referencia | Nominal |
| Fecha | Intervalo |
| Hora | Intevalo |
| Producto | Nominal |
| Cantidad | Razón |
| Unidad de medida | Nominal |
| Ubicación de origen | Nominal |
| Ubicación de desecho | Nominal |
| Estado | Nominal |
Se realizó una limpia previa a la base de datos debido a que no se podía manejar en R, ya que el formato en que se encontraba no permitía que R pudiera entender cuales eran las variables de nuestra base de datos y una vez teniendo la base de datos las técnicas que utilizamos en el programa fue Remover valores irrelevantes dejando las variables con mayor importancia como: Fecha, Cantidad y Ubicación de origen y la segunda técnica que utilizamos fue Convertir de caracter a fecha para tener la fecha en entero.
#### Técnica. Remover valores irrelevantes
#### Eliminar columnas
summary(bd_prod)
## no cliente id.form producto
## Min. : 1.0 Length:2568 Length:2568 Length:2568
## 1st Qu.: 25.0 Class :character Class :character Class :character
## Median : 50.0 Mode :character Mode :character Mode :character
## Mean : 50.8
## 3rd Qu.: 75.0
## Max. :121.0
## NA's :8
## fecha piezas.prog tiempo.min hora.fin
## Length:2568 Min. : 1 Length:2568 Length:2568
## Class :character 1st Qu.: 100 Class :character Class :character
## Mode :character Median : 192 Mode :character Mode :character
## Mean : 1744
## 3rd Qu.: 240
## Max. :36625
## NA's :1
## estacion_arranque laminas_procesadas inicio_sep_up fin_sep_up
## Length:2568 Min. : 0.0 Length:2568 Length:2568
## Class :character 1st Qu.: 0.5 Class :character Class :character
## Mode :character Median : 60.0 Mode :character Mode :character
## Mean : 108.9
## 3rd Qu.: 200.0
## Max. :1125.0
## NA's :593
## inicio_proceso fin_proceso tiempo_calidad tiempo_materiales
## Length:2568 Length:2568 Length:2568 Min. : 0.000
## Class :character Class :character Class :character 1st Qu.: 0.000
## Mode :character Mode :character Mode :character Median : 0.000
## Mean : 2.535
## 3rd Qu.: 1.000
## Max. :48.000
## NA's :2243
## mermas_maquinas
## Min. : 0.000
## 1st Qu.: 0.000
## Median : 1.000
## Mean : 1.626
## 3rd Qu.: 1.000
## Max. :50.000
## NA's :2461
bd_scrap2 <- bd_scrap
bd_scrap2 <- subset (bd_scrap2, select = -c (Referencia, Hora, Producto, Unidad.de.medida, Ubicación.de.desecho, Estado))
summary (bd_scrap2)
## Fecha Cantidad Ubicación.de.origen
## Length:250 Min. : 0.000 Length:250
## Class :character 1st Qu.: 1.000 Class :character
## Mode :character Median : 2.000 Mode :character
## Mean : 6.696
## 3rd Qu.: 7.000
## Max. :96.000
#### Técnica. Convertir tipos de datos
#### Convertir de caracter a fecha
bd_scrap3 <- bd_scrap2
bd_scrap3$Fecha <- as.Date(bd_scrap3$Fecha, format ="%d/%m/%y")
tibble(bd_scrap3)
## # A tibble: 250 × 3
## Fecha Cantidad Ubicación.de.origen
## <date> <dbl> <chr>
## 1 2020-08-31 2 SAB/Calidad/Entrega de PT
## 2 2020-08-31 1 SAB/Calidad/Entrega de PT
## 3 2020-08-31 1 SAB/Calidad/Entrega de PT
## 4 2020-08-31 31 SAB/Pre-Production
## 5 2020-08-31 1 SAB/Pre-Production
## 6 2020-08-31 1 SAB/Pre-Production
## 7 2020-08-31 1 SAB/Pre-Production
## 8 2020-08-31 9 SAB/Pre-Production
## 9 2020-08-31 2 SAB/Pre-Production
## 10 2020-08-31 1 SAB/Pre-Production
## # … with 240 more rows
# Cambiar los nombres de las variables más cortas y específicas
names(bd_scrap3) [3] = "Ubi_origen"
names(bd_scrap3)
## [1] "Fecha" "Cantidad" "Ubi_origen"
#### Exportar base de datos
bd_scrap4 <- bd_scrap3
write.csv(bd_scrap4, file ="scrap_FORM_limpia.csv", row.names = FALSE)
bd_scrap5 <- bd_scrap4
bd_scrap5 <- table(bd_scrap4$Fecha)
knitr::kable(bd_scrap5)
| Var1 | Freq |
|---|---|
| 2020-08-01 | 2 |
| 2020-08-02 | 5 |
| 2020-08-03 | 13 |
| 2020-08-04 | 6 |
| 2020-08-05 | 7 |
| 2020-08-06 | 7 |
| 2020-08-08 | 4 |
| 2020-08-09 | 5 |
| 2020-08-10 | 13 |
| 2020-08-11 | 3 |
| 2020-08-12 | 12 |
| 2020-08-13 | 5 |
| 2020-08-15 | 6 |
| 2020-08-16 | 24 |
| 2020-08-17 | 9 |
| 2020-08-19 | 17 |
| 2020-08-20 | 9 |
| 2020-08-22 | 11 |
| 2020-08-23 | 1 |
| 2020-08-24 | 21 |
| 2020-08-25 | 11 |
| 2020-08-26 | 12 |
| 2020-08-27 | 12 |
| 2020-08-29 | 8 |
| 2020-08-30 | 17 |
| 2020-08-31 | 10 |
bd_scrap6 <- bd_scrap5
bd_scrap6 <- table(bd_scrap4$Ubi_origen)
knitr::kable(bd_scrap6)
| Var1 | Freq |
|---|---|
| SAB/Calidad/Entrega de PT | 58 |
| SAB/Post-Production | 13 |
| SAB/Pre-Production | 179 |
bd_scrap7 <- bd_scrap6
bd_scrap7<-table(bd_scrap4$Fecha,bd_scrap4$Ubi_origen)
knitr::kable(bd_scrap7)
| SAB/Calidad/Entrega de PT | SAB/Post-Production | SAB/Pre-Production | |
|---|---|---|---|
| 2020-08-01 | 2 | 0 | 0 |
| 2020-08-02 | 3 | 2 | 0 |
| 2020-08-03 | 4 | 0 | 9 |
| 2020-08-04 | 2 | 0 | 4 |
| 2020-08-05 | 2 | 1 | 4 |
| 2020-08-06 | 1 | 0 | 6 |
| 2020-08-08 | 0 | 1 | 3 |
| 2020-08-09 | 0 | 0 | 5 |
| 2020-08-10 | 2 | 1 | 10 |
| 2020-08-11 | 0 | 0 | 3 |
| 2020-08-12 | 2 | 1 | 9 |
| 2020-08-13 | 5 | 0 | 0 |
| 2020-08-15 | 1 | 5 | 0 |
| 2020-08-16 | 5 | 0 | 19 |
| 2020-08-17 | 0 | 0 | 9 |
| 2020-08-19 | 0 | 0 | 17 |
| 2020-08-20 | 0 | 0 | 9 |
| 2020-08-22 | 3 | 1 | 7 |
| 2020-08-23 | 0 | 1 | 0 |
| 2020-08-24 | 5 | 0 | 16 |
| 2020-08-25 | 4 | 0 | 7 |
| 2020-08-26 | 7 | 0 | 5 |
| 2020-08-27 | 1 | 0 | 11 |
| 2020-08-29 | 2 | 0 | 6 |
| 2020-08-30 | 4 | 0 | 13 |
| 2020-08-31 | 3 | 0 | 7 |
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
pie(prop.table(table(bd_scrap4$Ubi_origen)),col=c("lightgreen","blue","red"),main="Ubicación de origen",las=1)
hist(bd_scrap4$Cantidad, main = "Cantidad de Material reciclado", xlab = "Cantidad", ylab = "Frecuencia",col = "blue")
plot(bd_scrap4$Fecha, bd_scrap4$Cantidad, main = "Cantidad de Scrap por fecha", xlab = "Fecha", ylab = "Cantidad")
Propuesta 1 Buscar máquinas con tecnología mas ahorradoras para que el material reciclado sea mayor y recupar mas desperdicio.
Propuesta 2 Crear un modelo que nos ayude a predecir cuanto scrap se genera dependiendo de las demás variables.
La base de datos cuenta con 2 variables y 50 registros.
Variable <-c("Fecha", "Mes", "Kilos")
Tipo <-c("Cuantitativa (continua)", "Cualitativa (nominal)", "Cuantitativa (discreta)")
table5<-data.frame(Variable, Tipo)
knitr::kable(table5)
| Variable | Tipo |
|---|---|
| Fecha | Cuantitativa (continua) |
| Mes | Cualitativa (nominal) |
| Kilos | Cuantitativa (discreta) |
Variables <-c("Fecha", "Mes", "Kilos")
Medicion <-c("Intervalo", "Intervalo", "Razón")
table6 <-data.frame(Variables, Medicion)
knitr::kable(table6)
| Variables | Medicion |
|---|---|
| Fecha | Intervalo |
| Mes | Intervalo |
| Kilos | Razón |
Se realizó una limpia previa a la base de datos debido a que no se podía manejar en R, ya que el formato en que se encontraba no permitía que R pudiera entender cuales eran las variables de nuestra base de datos y una vez teniendo la base de datos las técnicas que utilizamos en el programa fue Remover valores irrelevantes dejando las variables con mayor importancia como: Fecha, Cantidad y Ubicación de origen y la segunda técnica que utilizamos fue Convertir de caracter a fecha para tener la fecha en entero.
#### Técnica. Remover valores irrelevantes
#### Eliminar columnas
summary(bd_merma)
## Fecha Mes Kilos
## Length:60 Length:60 Min. : 790
## Class :character Class :character 1st Qu.: 3545
## Mode :character Mode :character Median : 4025
## Mean : 9271
## 3rd Qu.: 4702
## Max. :185426
bd_merma2 <- bd_merma
bd_merma2 <- subset (bd_merma2, select = -c (Mes))
#### Eliminar renglones
bd_merma3 <- bd_merma2
bd_merma3 <- bd_merma3[bd_merma3$Fecha > 0, ]
#### Técnica. Convertir tipos de datos
#### Convertir de caracter a fecha
bd_merma4 <- bd_merma3
bd_merma4$Fecha <- as.Date(bd_merma4$Fecha, format ="%d/%m/%y")
tibble(bd_merma4)
## # A tibble: 50 × 2
## Fecha Kilos
## <date> <int>
## 1 2022-01-11 5080
## 2 2022-01-11 3810
## 3 2022-01-22 2990
## 4 2022-01-22 2680
## 5 2022-02-18 3650
## 6 2022-02-18 4380
## 7 2022-02-18 3870
## 8 2022-02-18 3590
## 9 2022-02-18 3410
## 10 2022-02-24 3930
## # … with 40 more rows
#### Exportar
bd_merma5 <- bd_merma4
write.csv(bd_merma5, file ="merma_FORM_limpia.csv", row.names = FALSE)
media <- mean(bd_merma5$Kilos)
media
## [1] 3708.52
mediana <- median(bd_merma5$Kilos)
mode <- function (x) {
ux <- unique(x)
ux [which.max(tabulate(match(x,ux)))]
}
mode <- mode(bd_merma5$Kilos)
mode
## [1] 3810
hist(bd_merma5$Kilos)
library(ggplot2)
ggplot(bd_merma5, aes(x= Fecha, y= Kilos)) + geom_bar(stat="identity", fill="red") + scale_fill_grey() + labs(title = "Kilos de merma", x = "Fecha")
bd_merma5$Fecha <- as.Date(bd_merma5$Fecha, format = "%d/%m/%Y")
plot(bd_merma5$Fecha, bd_merma5$Kilos, main = "Kilos de merma",
xlab = "Fecha", ylab = "Kilos",
pch = 19, frame = FALSE)
Propuesta 1 Buscar máquinas con tecnología mas ahorradoras para reducir la merma.
Propuesta 2 Crear un modelo que nos ayude a predecir cuanta merma se puede gastar dependiendo de las demás variables.
Propuesta 3 Buscar negocios donde se pueda realizar economía circular.
Construir una base de datos y realizar interpretaciones sobre la información que se tiene en una empresa es clave para poder conocer a tu negocio, partiendo de análisis desde gráficas, histogramas hasta poder construir después con esa información modelos que nos ayuden a poder predecir y tener una mejor toma de decisiones. En esta caso trabajamos con la interpretación de la empresa FORM, conociendo sus áreas de producción, scrap y mermas y pudimos desarrollar este reporte para poder saber como se encuentra el socioformador.