#file.choose()
bd <- read.csv("/Users/andreapaolasosa/Desktop/produccionagosto.csv")
summary(bd)
## Fecha No. CLIENTE ID.FORM
## Length:2571 Min. : 1.00 Length:2571 Length:2571
## Class :character 1st Qu.: 25.00 Class :character Class :character
## Mode :character Median : 50.00 Mode :character Mode :character
## Mean : 50.83
## 3rd Qu.: 75.00
## Max. :121.00
## NA's :8
## PRODUCTO X PIEZAS.PROG. TMO..MIN.
## Length:2571 Length:2571 Length:2571 Length:2571
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## HR..FIN ESTACION.ARRANQUE Laminas.procesadas INICIO.SEP.UP
## Length:2571 Length:2571 Length:2571 Length:2571
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## FIN.INICIO.DE.SEP.UP INICIO.de.PROCESO FIN.de.PROCESO TIEMPO.CALIDAD
## Length:2571 Length:2571 Length:2571 Min. : 0.000
## Class :character Class :character Class :character 1st Qu.: 0.000
## Mode :character Mode :character Mode :character Median : 0.000
## Mean : 2.199
## 3rd Qu.: 1.000
## Max. :48.000
## NA's :2154
## TIEMPO.MATERIALES MERMAS.Maquinas.
## Min. : 0.000 Mode:logical
## 1st Qu.: 0.000 NA's:2571
## Median : 1.000
## Mean : 1.595
## 3rd Qu.: 1.000
## Max. :50.000
## NA's :2460
str(bd)
## 'data.frame': 2571 obs. of 18 variables:
## $ Fecha : chr "01/08/2022" "01/08/2022" "01/08/2022" "01/08/2022" ...
## $ No. : int 1 2 3 4 5 6 7 8 9 10 ...
## $ CLIENTE : chr "VARROC" "VARROC" "VARROC" "DENSO" ...
## $ ID.FORM : chr "VL-017-13938" "VL-017-13936" "VL-017-14729" "" ...
## $ PRODUCTO : chr "763 . KIT. CAJA." "747 KIT. CAJA HSC. ( 2 Partes)" "747 KIT. TAPA." "TOYOTA. MCV. Insterto D 2R. CORTE. 1 Golpe = 12 piezas. ( 9 Pza. / Celda)." ...
## $ X : chr "" "" "" "" ...
## $ PIEZAS.PROG. : chr "199" "57" "68" "192" ...
## $ TMO..MIN. : chr "15" "10" "10" "15" ...
## $ HR..FIN : chr "9:15" "9:25" "9:35" "9:50" ...
## $ ESTACION.ARRANQUE : chr "C1" "C1Y2" "C1Y2" "C1" ...
## $ Laminas.procesadas : chr "201" "116" "69" "49" ...
## $ INICIO.SEP.UP : chr "9:00" "9:26" "10:02" "10:12" ...
## $ FIN.INICIO.DE.SEP.UP: chr "9:12" "9:31" "10:09" "10.17" ...
## $ INICIO.de.PROCESO : chr "9:13" "9:32" "10:09" "10:18" ...
## $ FIN.de.PROCESO : chr "9:26" "9:53" "10.12" "10:20" ...
## $ TIEMPO.CALIDAD : int 1 1 1 1 1 1 1 1 1 1 ...
## $ TIEMPO.MATERIALES : int NA NA NA NA NA 3 NA NA NA NA ...
## $ MERMAS.Maquinas. : logi NA NA NA NA NA NA ...
#install.packages("psych")
#library(psych)
Eliminar columnas que no aportan informacion valiosa al analisis de esta manera nos quedamos con la informacion de mayor relevancia.
bd1 <- bd
bd1<-subset(bd1,select=-c(No.,ID.FORM,PRODUCTO,X,HR..FIN,ESTACION.ARRANQUE,INICIO.SEP.UP,FIN.INICIO.DE.SEP.UP,INICIO.de.PROCESO,FIN.de.PROCESO,TIEMPO.CALIDAD,TIEMPO.MATERIALES,MERMAS.Maquinas.))
str(bd1)
## 'data.frame': 2571 obs. of 5 variables:
## $ Fecha : chr "01/08/2022" "01/08/2022" "01/08/2022" "01/08/2022" ...
## $ CLIENTE : chr "VARROC" "VARROC" "VARROC" "DENSO" ...
## $ PIEZAS.PROG. : chr "199" "57" "68" "192" ...
## $ TMO..MIN. : chr "15" "10" "10" "15" ...
## $ Laminas.procesadas: chr "201" "116" "69" "49" ...
Convertir de caracter a N/A para poder eliminar los espacios en blanco sin datos
bd2 <- bd1
bd2$TMO..MIN. <- substr(bd2$TMO..MIN., start = 1, stop = 2)
#tibble(bd2)
bd2$TMO..MIN. <- as.integer(bd2$TMO..MIN.)
## Warning: NAs introduced by coercion
str(bd2)
## 'data.frame': 2571 obs. of 5 variables:
## $ Fecha : chr "01/08/2022" "01/08/2022" "01/08/2022" "01/08/2022" ...
## $ CLIENTE : chr "VARROC" "VARROC" "VARROC" "DENSO" ...
## $ PIEZAS.PROG. : chr "199" "57" "68" "192" ...
## $ TMO..MIN. : int 15 10 10 15 15 30 15 15 15 20 ...
## $ Laminas.procesadas: chr "201" "116" "69" "49" ...
bd3 <- bd2
bd3$PIEZAS.PROG. <- substr(bd3$PIEZAS.PROG., start = 1, stop = 2)
#tibble(bd3)
bd3$PIEZAS.PROG. <- as.integer(bd3$PIEZAS.PROG.)
## Warning: NAs introduced by coercion
str(bd3)
## 'data.frame': 2571 obs. of 5 variables:
## $ Fecha : chr "01/08/2022" "01/08/2022" "01/08/2022" "01/08/2022" ...
## $ CLIENTE : chr "VARROC" "VARROC" "VARROC" "DENSO" ...
## $ PIEZAS.PROG. : int 19 57 68 19 19 40 80 10 10 16 ...
## $ TMO..MIN. : int 15 10 10 15 15 30 15 15 15 20 ...
## $ Laminas.procesadas: chr "201" "116" "69" "49" ...
bd4 <- bd3
bd4$Laminas.procesadas <- substr(bd4$Laminas.procesadas, start = 1, stop = 2)
#tibble(bd4)
bd4$Laminas.procesadas <- as.integer(bd4$Laminas.procesadas)
## Warning: NAs introduced by coercion
str(bd4)
## 'data.frame': 2571 obs. of 5 variables:
## $ Fecha : chr "01/08/2022" "01/08/2022" "01/08/2022" "01/08/2022" ...
## $ CLIENTE : chr "VARROC" "VARROC" "VARROC" "DENSO" ...
## $ PIEZAS.PROG. : int 19 57 68 19 19 40 80 10 10 16 ...
## $ TMO..MIN. : int 15 10 10 15 15 30 15 15 15 20 ...
## $ Laminas.procesadas: int 20 11 69 49 49 80 41 53 53 55 ...
bd5 <- bd4
bd5$TMO..MIN.[is.na(bd4$TMO..MIN.)]<-mean(bd5$TMO..MIN., na.rm = TRUE)
summary (bd5)
## Fecha CLIENTE PIEZAS.PROG. TMO..MIN.
## Length:2571 Length:2571 Min. : 0.00 Min. : 0.000
## Class :character Class :character 1st Qu.:15.00 1st Qu.: 9.842
## Mode :character Mode :character Median :20.00 Median : 9.842
## Mean :22.57 Mean : 9.842
## 3rd Qu.:25.00 3rd Qu.:10.000
## Max. :99.00 Max. :70.000
## NA's :687
## Laminas.procesadas
## Min. : 0.0
## 1st Qu.: 0.0
## Median : 0.0
## Mean : 5.1
## 3rd Qu.:10.0
## Max. :97.0
## NA's :1189
Reemplazar cero con N/A para eliminar valores innecesarios.
bd6 <- bd5
bd6$Laminas.procesadas[bd6$Laminas.procesadas < 1]<- NA
summary (bd6)
## Fecha CLIENTE PIEZAS.PROG. TMO..MIN.
## Length:2571 Length:2571 Min. : 0.00 Min. : 0.000
## Class :character Class :character 1st Qu.:15.00 1st Qu.: 9.842
## Mode :character Mode :character Median :20.00 Median : 9.842
## Mean :22.57 Mean : 9.842
## 3rd Qu.:25.00 3rd Qu.:10.000
## Max. :99.00 Max. :70.000
## NA's :687
## Laminas.procesadas
## Min. : 1.0
## 1st Qu.:10.0
## Median :11.0
## Mean :14.1
## 3rd Qu.:12.0
## Max. :97.0
## NA's :2071
Borrar todos los registros NA de una tabla para tener una base de datos precisa y no contabilizar el dia que no hubo produccion
bd7 <- bd6
bd7 <- na.omit(bd7)
str(bd7)
## 'data.frame': 494 obs. of 5 variables:
## $ Fecha : chr "01/08/2022" "01/08/2022" "01/08/2022" "01/08/2022" ...
## $ CLIENTE : chr "VARROC" "VARROC" "VARROC" "DENSO" ...
## $ PIEZAS.PROG. : int 19 57 68 19 19 40 80 10 10 16 ...
## $ TMO..MIN. : num 15 10 10 15 15 30 15 15 15 20 ...
## $ Laminas.procesadas: int 20 11 69 49 49 80 41 53 53 55 ...
## - attr(*, "na.action")= 'omit' Named int [1:2077] 29 30 31 32 33 34 35 36 37 38 ...
## ..- attr(*, "names")= chr [1:2077] "29" "30" "31" "32" ...
Variable<-c("Fecha","CLIENTE","PIEZAS.PROG","TMO..MIN.","Laminas.procesadas")
Type<-c("Cuantitativa(Discreta)","Cualitativa", "Cuantitativa(Discreta)", "Cuantitativa(Discreta)", "Cuantitativa(Discreta)")
table<-data.frame(Variable,Type)
knitr::kable(table)
| Variable | Type |
|---|---|
| Fecha | Cuantitativa(Discreta) |
| CLIENTE | Cualitativa |
| PIEZAS.PROG | Cuantitativa(Discreta) |
| TMO..MIN. | Cuantitativa(Discreta) |
| Laminas.procesadas | Cuantitativa(Discreta) |
Variable<-c("Fecha","CLIENTE","PIEZAS.PROG","TMO..MIN.","Laminas.procesadas")
Type<-c("Cuantitativa(Discreta)","Cualitativa", "Cuantitativa(Discreta)", "Cuantitativa(Discreta)", "Cuantitativa(Discreta)")
Escala_de_Medición <- c("Fecha","Empresa","Numero de produccion", "Minutos","Sobrante")
table<-data.frame(Variable,Type)
knitr::kable(table)
| Variable | Type |
|---|---|
| Fecha | Cuantitativa(Discreta) |
| CLIENTE | Cualitativa |
| PIEZAS.PROG | Cuantitativa(Discreta) |
| TMO..MIN. | Cuantitativa(Discreta) |
| Laminas.procesadas | Cuantitativa(Discreta) |
cruzada1<-table(bd7$Fecha,bd7$PIEZAS.PROG.)
knitr::kable(cruzada1)
| 10 | 12 | 15 | 16 | 19 | 20 | 24 | 25 | 26 | 30 | 32 | 35 | 40 | 45 | 50 | 57 | 60 | 68 | 70 | 80 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01/08/2022 | 11 | 0 | 0 | 5 | 14 | 24 | 1 | 0 | 2 | 0 | 4 | 0 | 6 | 0 | 3 | 1 | 1 | 1 | 0 | 3 |
| 02/08/2022 | 5 | 0 | 5 | 0 | 0 | 9 | 0 | 2 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 03/08/2022 | 4 | 0 | 1 | 0 | 0 | 3 | 0 | 6 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 04/08/2022 | 2 | 1 | 3 | 0 | 0 | 3 | 0 | 10 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 05/08/2022 | 5 | 0 | 2 | 0 | 0 | 3 | 0 | 5 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 06/08/2022 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 08/08/2022 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 09/08/2022 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 5 | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 3 | 0 | 1 | 0 |
| 10/08/2022 | 7 | 0 | 1 | 0 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 11/08/2022 | 6 | 0 | 1 | 0 | 0 | 4 | 0 | 8 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 2 | 0 | 0 | 0 |
| 12/08/2022 | 7 | 0 | 1 | 0 | 0 | 1 | 0 | 7 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13/08/2022 | 1 | 0 | 2 | 0 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 15/08/2022 | 7 | 0 | 2 | 0 | 0 | 3 | 0 | 4 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 16/08/2022 | 4 | 0 | 1 | 0 | 0 | 3 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 17/08/2022 | 10 | 0 | 4 | 0 | 0 | 3 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 18/08/2022 | 6 | 0 | 3 | 0 | 0 | 2 | 0 | 3 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 19/08/2022 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 20/08/2022 | 7 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 22/08/2022 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 23/08/2022 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 24/08/2022 | 1 | 0 | 5 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 25/08/2022 | 5 | 0 | 1 | 0 | 0 | 2 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 26/08/2022 | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 5 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 27/08/2022 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 29/08/2022 | 9 | 0 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 30/08/2022 | 8 | 0 | 4 | 0 | 0 | 5 | 0 | 4 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 31/08/2022 | 15 | 1 | 0 | 0 | 0 | 3 | 0 | 6 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
cruzada2<-table(bd7$Laminas.procesadas,bd7$TMO..MIN.)
knitr::kable(cruzada2)
| 0 | 9.84184675834971 | 10 | 11 | 12 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60 | 65 | 70 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 1 | 5 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 4 | 5 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 3 | 42 | 71 | 33 | 7 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 11 | 1 | 24 | 48 | 37 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12 | 1 | 25 | 21 | 25 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 16 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 17 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 19 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 20 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 13 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 |
| 21 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 22 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 23 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 25 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 27 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 32 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 35 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 38 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 40 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 41 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 44 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 49 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 51 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 53 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 55 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 65 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 69 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 79 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 97 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Datos cualitativos
barplot(prop.table(table(bd7$Laminas.procesadas)),col=c("pink","yellow","red","green"),main="Fabricante por estado", ylab ="Frecuencias",las=1)
pie(prop.table(table(bd7$CLIENTE)),col=c("pink","blue","yellow","orange","red","grey","green","black","white"),main="Empresa", ylab ="Frecuencias",las=1)
plot(bd7$TMO..MIN., xlab = "Proceso de lamina", ylab = "Tiempo", main = "Tiempo por Lamina" )
#file.choose()
base <- read.csv("/Users/andreapaolasosa/Desktop/FORM - Scrap.csv")
summary(base)
## Referencia Fecha Producto Cantidad
## Length:251 Length:251 Length:251 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 1.00
## Mode :character Mode :character Mode :character Median : 2.00
## Mean : 13.34
## 3rd Qu.: 7.00
## Max. :1674.00
## Unidad.de.medida Ubicación.de.origen Ubicación.de.desecho Estado
## Length:251 Length:251 Length:251 Length:251
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
250 registros y 8 variables
str(base)
## 'data.frame': 251 obs. of 8 variables:
## $ Referencia : chr "agosto 2022 (250)" "SP/08731" "SP/08730" "SP/08729" ...
## $ Fecha : chr "" "2022-08-31 14:55:40" "2022-08-31 14:49:25" "2022-08-31 13:49:29" ...
## $ Producto : chr "" "[BACKFRAME 60% CUELLO ARMADO] 18805. 60% Backframe. Cuello Armado." "[N61506747 CAJA] N61506747. Kit. Caja." "[N61506729 SEPARADOR] N61506729. Kit. Separador." ...
## $ Cantidad : num 1674 2 1 1 31 ...
## $ Unidad.de.medida : chr "" "Unidad(es)" "Unidad(es)" "Unidad(es)" ...
## $ Ubicación.de.origen : chr "" "SAB/Calidad/Entrega de PT" "SAB/Calidad/Entrega de PT" "SAB/Calidad/Entrega de PT" ...
## $ Ubicación.de.desecho: chr "" "Virtual Locations/Scrapped" "Virtual Locations/Scrapped" "Virtual Locations/Scrapped" ...
## $ Estado : chr "" "Hecho" "Hecho" "Hecho" ...
#install.packages("psych")
#library(psych)
#Tecnica 1. Remover valores irrelevantes Eliminar columnas
base2 <- base
base2 <- subset(base2, select = -c (Referencia,Unidad.de.medida))
#Tecnica 1. Remover valores irrelevantes Eliminar renglones
base3 <- base2
base3 <- base3[base3$Cantidad>0,]
summary (base3)
## Fecha Producto Cantidad Ubicación.de.origen
## Length:250 Length:250 Min. : 1.00 Length:250
## Class :character Class :character 1st Qu.: 1.00 Class :character
## Mode :character Mode :character Median : 2.00 Mode :character
## Mean : 13.39
## 3rd Qu.: 7.00
## Max. :1674.00
## Ubicación.de.desecho Estado
## Length:250 Length:250
## Class :character Class :character
## Mode :character Mode :character
##
##
##
Variable<-c("Fecha","Producto","Cantidad","Ubicación.de.origen","Ubicación.de.desecho","Estado")
Type<-c("Cuantitativa(Discreta)","Cualitativa", "Cualitativa", "Cualitativa", "Cualitativa","Cualitativa")
table<-data.frame(Variable,Type)
knitr::kable(table)
| Variable | Type |
|---|---|
| Fecha | Cuantitativa(Discreta) |
| Producto | Cualitativa |
| Cantidad | Cualitativa |
| Ubicación.de.origen | Cualitativa |
| Ubicación.de.desecho | Cualitativa |
| Estado | Cualitativa |
Variable2<-c("Fecha","Producto","Cantidad","Ubicación.de.origen","Ubicación.de.desecho","Estado")
Type<-c("Cuantitativa(Discreta)","Cualitativa", "Cualitativa", "Cualitativa", "Cualitativa","Cualitativa")
Escala_de_Medición2 <- c("Fecha","Producto","Numero de produccion", "Origen","Ubicacion","Completado")
table2<-data.frame(Variable,Type)
knitr::kable(table2)
| Variable | Type |
|---|---|
| Fecha | Cuantitativa(Discreta) |
| Producto | Cualitativa |
| Cantidad | Cualitativa |
| Ubicación.de.origen | Cualitativa |
| Ubicación.de.desecho | Cualitativa |
| Estado | Cualitativa |
cruzada3<-table(base3$Cantidad,base3$Estado)
knitr::kable(cruzada3)
| Hecho | ||
|---|---|---|
| 1 | 0 | 76 |
| 2 | 0 | 59 |
| 2.5 | 0 | 2 |
| 3 | 0 | 14 |
| 4 | 0 | 18 |
| 5 | 0 | 4 |
| 6 | 0 | 11 |
| 7 | 0 | 4 |
| 8 | 0 | 10 |
| 9 | 0 | 6 |
| 10 | 0 | 8 |
| 11 | 0 | 1 |
| 12 | 0 | 4 |
| 13 | 0 | 2 |
| 14 | 0 | 1 |
| 15 | 0 | 3 |
| 16 | 0 | 2 |
| 18 | 0 | 1 |
| 19 | 0 | 2 |
| 20 | 0 | 5 |
| 24 | 0 | 4 |
| 28 | 0 | 1 |
| 31 | 0 | 1 |
| 36 | 0 | 2 |
| 40 | 0 | 1 |
| 43 | 0 | 1 |
| 48 | 0 | 1 |
| 51 | 0 | 1 |
| 56 | 0 | 1 |
| 60 | 0 | 1 |
| 80 | 0 | 1 |
| 96 | 0 | 1 |
| 1674.0016 | 1 | 0 |
cruzada4<-table(base3$Producto,base3$Ubicación.de.desecho)
knitr::kable(cruzada4)
| Virtual Locations/Scrapped | ||
|---|---|---|
| 1 | 0 | |
| [2065WY AS 30 99 0000 00 000 TAPA - BOX 2064WY] BOX 2064WY | 0 | 2 |
| [241B EXPORT CAJA] 241B. Export. Caja. | 0 | 1 |
| [341332 CELDA - U611 & U625] 341332. U611. U625. Celda Troquelada. | 0 | 10 |
| [341332 CHAROLA - U611 & U625] 341332. U611. U625. Charola Troquelada. | 0 | 5 |
| [341332 DIVISOR - U611 & U625] 341332. U611. U625. Divisor Troquelado. | 0 | 5 |
| [357790-TAPA] 357790. Tapa. | 0 | 3 |
| [358268-CAJA] 358268-CAJA | 0 | 2 |
| [358268-TAPA] 358268-TAPA | 0 | 2 |
| [428579 AS 30 99 0000 00 000 INSERTO- FORD DAMPER] 14306. Damper Ford DTP. Inserto. | 0 | 1 |
| [428818 AS 30 99 0000 00 000 INSERTO - CHRYSLER INSERT DJ] CHRYSLER INSERT DJ PART 694087 | 0 | 3 |
| [429296 AS 30 99 0000 00 000 INSERTO - INSERT TMC 150 TESLA] 14783. TMC150. Inserto. | 0 | 1 |
| [446265 AS 30 99 0000 00 000 CAPA INTERMEDIA- PAD 43X36 DAIMLER] 14454. Daimler Pad 43 X 36 | 0 | 2 |
| [467.416-24 COMPARTIMENT INSERT 535X335X221MM CC ESD] Refacciones. P1. Celdado. | 0 | 1 |
| [496455 FS 30 99 0000 00 000 CARTÓN - BOX 0371813] BOX 0371813 | 0 | 1 |
| [500033 AS 30 99 0000 00 000 INSERTO - Inserto FORD China 500033] 17397. 500033. FORD China. Inserto. | 0 | 1 |
| [642762 PACKING, SHEET, 565.2X742.9 - INSERT 642762] 642762. Pad. S.M. | 0 | 3 |
| [643920 CART, SOM, 746.8X569.0X292.1, RSC - BOX 643920 STABOMAT] 13891. 643920. Stabomat. Caja. | 0 | 2 |
| [647713] 647713. Caja. | 0 | 3 |
| [938830 FS 30 99 0000 00 000 CARTÓN - SIZE 24”] 24”. Caja Terminada. | 0 | 1 |
| [939069 FS 30 99 0000 00 000 CARTÓN -BOX 939069 34”] 34”. Caja Terminada. | 0 | 1 |
| [A - CELDA SUDAFRICA BMW G01 LCI] Sudafrica. A. Pieza. | 0 | 3 |
| [B - CELDA SUDAFRICA BMW G01 LCI] Sudáfrica. B. Pieza. | 0 | 3 |
| [BACKFRAME 60% CUELLO ARMADO] 18805. 60% Backframe. Cuello Armado. | 0 | 1 |
| [BACKFRAME 60% TAPA BASE] 18271. 60% Backframe. Tapa Base. | 0 | 1 |
| [BOX 143907 - CELDA] 143907. Solares. Celda Troquelada. | 0 | 3 |
| [BOX 143907 - TAPA] 143907. Solares. Tapa Troquelada. | 0 | 1 |
| [C - CELDA SUDAFRICA BMW G01 LCI] Sudáfrica. C. Pieza. | 0 | 3 |
| [CAJA ( ARMREST / HR REAR) TMC 110 MODEL Y] 19148. Modelo Y. TMC0110. Armrest & Rear & Center. Caja | 0 | 1 |
| [CAJA 695] N61506695. Caja. | 0 | 1 |
| [CAJA 726] N61506726 CAJA | 0 | 1 |
| [CAJA 734949] CAJA 734949 | 0 | 1 |
| [CAJA 784] 784. Kit. Caja. | 0 | 2 |
| [CAJA 95161] 19079. 95161. Kit. Caja. | 0 | 1 |
| [Caja backup canastilla gris] CAJA DE CARTÓN BACK UP CANASTILLA GRIS- P3 | 0 | 1 |
| [CAJA INDUSTRIAL 16” ROTATIVA] 16”. Lamina Troquelada. | 0 | 12 |
| [CAJA INDUSTRIAL 24” ROTATIVA COMPLETA] 24”. Lamina Troquelada. | 0 | 3 |
| [CAJA INDUSTRIAL 34” ROTATIVA] 34”. Lamina Troquelada. | 0 | 11 |
| [CAJA INDUSTRIAL 48” CON SELLO (PP)] 48”. Lamina Troquelada. | 0 | 7 |
| [CAJA MCV] Toyota. MCV. Caja Troquelada. | 0 | 2 |
| [CAJA RSC DE KIT REFLEX] 857. Reflex. Caja. | 0 | 1 |
| [CAJA RSC SHOCK TOWER] Shock Tower. Caja. | 0 | 2 |
| [CAJA RSC TGTX] TGTX. Caja RSC. | 0 | 1 |
| [CELDA 955061] 955061. Celda Troquelada. | 0 | 6 |
| [Celda Audi coupe] 18892. Coupe. Celda Troquelada. | 0 | 3 |
| [CELDA AUDI Q5] 14096. Audi Q5. Celda Troquelada. | 0 | 10 |
| [CELDA CON MICRO CORUUGAD O EN 32 PORTA ETIQUETA] TR13777 KIT TGTX. Caja + Celda | 0 | 1 |
| [CELDA GM177] 14100. GM177. Celda Troquelada. | 0 | 9 |
| [CELDA VW CHATTANOOGA] Chattanooga. St3. Celda Troquelada. | 0 | 1 |
| [CELL C] 60% Backframe. Separador con Doblez. | 0 | 1 |
| [CHAROLA 955061] 955061. Charola Troquelada. | 0 | 5 |
| [Charola audi coupe] 18890. Coupe. Charola Troquelada. | 0 | 2 |
| [CHAROLA AUDI Q5] 14128. Audi Q5. Charola Troquelada. | 0 | 5 |
| [CHAROLA GM177] 14131. GM177. Charola Troquelada. | 0 | 5 |
| [CHAROLA VW CHATTANOOGA] Chattanooga. St1 y St3. Charola Troquelada. | 0 | 5 |
| [Console cell] Console Lower. Celda Armada. | 0 | 1 |
| [D - CELDA SUDAFRICA BMW G01 LCI] Sudáfrica. D. Pieza. | 0 | 3 |
| [DIVISOR AUDI Q5] 14234. Audi Q5. Divisor Troquelado. | 0 | 4 |
| [DIVISOR CON DOBLEZ VW CHATTANOOGA] Chattanooga. St1 y St3. Divisor Troquelado. | 0 | 4 |
| [DIVISOR GM177] 14238. GM177. Divisor. | 0 | 5 |
| [DIVISOR REFLEX] 857. Reflex. Divisor. | 0 | 1 |
| [DIVISOR ZIGZAG VW CHATTANOOGA] Chattanooga. St1 y St3. Zig Zag Troquelado. | 0 | 4 |
| [E - CELDA SUDAFRICA BMW G01 LCI] Sudáfrica. E. Pieza. | 0 | 2 |
| [F - CELDA SUDAFRICA BMW G01 LCI] Sudáfrica. F. Pieza. | 0 | 3 |
| [HSC P702 ICP] 17215. P558. P702. CD539. ICP. Caja HSC. Pieza. | 0 | 4 |
| [INSERTO 241B EXPORT] 14308. 241B. Export. Inserto. | 0 | 2 |
| [Inserto Nextracker 3.0] Nextracker. 2.0. Damper. Inserto. | 0 | 4 |
| [INSERTO SOLARES] 143907. Solares. Inserto Troquelada. | 0 | 1 |
| [MITAD DE CUELLO SHOCK TOWER] Shock Tower. Mitad Cuello. | 0 | 1 |
| [MQ4A-Dunnage-part2] Kia. Inserto. Pieza. | 0 | 3 |
| [MQ4A-Dunnage-tray] Kia. Charola. Pieza. | 0 | 3 |
| [N61506396 CAJA] N61506396. Caja. | 0 | 2 |
| [N61506396 SEPARADOR] N61506396. Separador. | 0 | 1 |
| [N61506729 SEPARADOR] N61506729. Kit. Separador. | 0 | 1 |
| [N61506747 CAJA] N61506747. Kit. Caja. | 0 | 3 |
| [N61506747 TAPA] N61506747. Kit. Tapa. | 0 | 2 |
| [NEXTRACKER 2.0 DAMPER CUELLO] 18976. Nextracker. 2.0. Damper. Cuello, | 0 | 2 |
| [NEXTRACKER 2.0 DAMPER TAPA DE COROPLAST] Nextracker. 2.0. Damper. Tapa de Coroplast. | 0 | 2 |
| [PTN.WS IP 60 CELL IBT] Y0199489 PTN.WS IP 60 CELL IBT | 0 | 1 |
| [REJILLA DE 16X PARA PIVOT DE TESLA PARA PROCESO DE MTM A PPG] CELDA PIVOTE CONTENEDOR RETORNABLE | 0 | 1 |
| [SEAT BACK CAJA] Seat Back. Caja HSC 1/2 | 0 | 2 |
| [SEAT BACK CELDADO] Seat Back. Celda Armada. | 0 | 1 |
| [SEPARADOR 41” X 44” PARA PIVOTE Y SEAT BACK DE MTM A PPG] SEPARADOR PIVOTE CONTENEDOR RETORNABLE | 0 | 1 |
| [SEPARADOR MOTORGEAR] Motorgear. Separador para Celdas. | 0 | 1 |
| [TAPA 695] N61506695. Tapa. | 0 | 1 |
| [TAPA AVANAZAR] Avanzar. Tapa. Pieza. | 0 | 2 |
| [TESLA XDA90 CELDA A] XDA90. A. Pieza. | 0 | 3 |
| [TESLA XDA90 CELDA B] XDA90. B. Pieza. | 0 | 1 |
| [TESLA XDA90 CHAROLA SUAJADA] XDA90. Charola. Pieza. | 0 | 2 |
| [TMC 050 - RSC] Console lower - TMC 050 | 0 | 1 |
| [TMC 095] 19162. Modelo Y. TMC095. Front. Caja. | 0 | 2 |
| [TMC XXX] Armrest. Caja RSC. | 0 | 1 |
| [TR11910 CHAROLA C/2 DIV #20 SMOOTH C/32 CAVIDADES] TR11910. U725. DMS. ITB. Charola con ITB. | 0 | 3 |
| [TR12438 TAPA ICP 539 TAPA 2415-2 EN CPARTÓN SENCILLO CORRUGADO] 18840. CD539. Tapa. | 0 | 1 |
| [TR12440 TAPA P558] 18842. P558. Tapa. | 0 | 1 |
| [TR13776 CAJA RSC CK 44 ECT C/ PORTA ETIQUETA] TR13776. Caja con Porta Etiqueta. | 0 | 1 |
#Datos cualitativos
barplot(prop.table(table(base3$Producto)),col=c("pink","purple","yellow","orange","red","grey","green","black","white"),main="Productos", ylab ="Frecuencias",las=1)
#file.choose()
datos <- read.csv("/Users/andreapaolasosa/Desktop/FORM - Merma.csv")
summary(datos)
## Fecha Mes Kilos
## Length:60 Length:60 Length:60
## Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
La base tiene 60 registros y 3 variables
str(datos)
## 'data.frame': 60 obs. of 3 variables:
## $ Fecha: chr "11/01/22" "11/01/22" "22/01/22" "22/01/22" ...
## $ Mes : chr "ENERO" "ENERO" "ENERO" "ENERO" ...
## $ Kilos: chr "5080" "3810" "2990" "2680" ...
#install.packages("psych")
#library(psych)
#Tecnica 1. Remover valores irrelevantes Eliminar columnas
datos2 <- datos
datos2 <- subset(datos2, select = -c (Fecha))
Variable<-c("Mes","Kilos")
Type<-c("Cuantitativo (discreto)","Cuantitativo (discreto)")
table<-data.frame(Variable,Type)
knitr::kable(table)
| Variable | Type |
|---|---|
| Mes | Cuantitativo (discreto) |
| Kilos | Cuantitativo (discreto) |
Variable<-c("Mes","Kilos")
Type<-c("Cuantitativo (discreto)","Cuantitativo (discreto)")
Escala_de_Medición <- c("Mes","Peso")
table<-data.frame(Variable,Type)
knitr::kable(table)
| Variable | Type |
|---|---|
| Mes | Cuantitativo (discreto) |
| Kilos | Cuantitativo (discreto) |
Mediante la actividad realizada se pudo obtener un mejor analisis acerca de las diferentes areas de la empresa FORM. A raiz de los resultados se puede realizar una mejor interpretacion para la creacion de nuevas estrategias.