# Load packages

# Core
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.0      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(tidyquant)
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## 
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
## 
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Goal

Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

1 Import stock prices

# Choose Stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x = symbols,
                 get = "stock.prices", 
                 from = "2012-01-01",
                 to = "2017-01-01")

2 Convert prices to returns

asset_returns_tbl<- prices %>%
    
    group_by(symbol) %>%
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 type       = "log") %>% 
    ungroup() %>%
    set_names(c("asset", "date", "returns"))

asset_returns_tbl
## # A tibble: 300 × 3
##    asset date        returns
##    <chr> <date>        <dbl>
##  1 SPY   2012-01-31  0.0295 
##  2 SPY   2012-02-29  0.0425 
##  3 SPY   2012-03-30  0.0317 
##  4 SPY   2012-04-30 -0.00670
##  5 SPY   2012-05-31 -0.0619 
##  6 SPY   2012-06-29  0.0398 
##  7 SPY   2012-07-31  0.0118 
##  8 SPY   2012-08-31  0.0247 
##  9 SPY   2012-09-28  0.0250 
## 10 SPY   2012-10-31 -0.0184 
## # … with 290 more rows

3 Make plot

asset_returns_tbl %>%
    ggplot(aes(x = returns)) + 
    geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) + 
    geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = .3, binwidth = .01) + 
    facet_wrap("asset", ncol = 1) +
    #Labeling 
    labs(title = "Distribution of Monthly Returns, 2012-2016", 
         y = "Frequency" ,
         x = "Rate of Returns" ,
         caption = "A typical monthly return is higher for SPY and IJS than for AGG, EEM, and EFA")