Key points: (i) Overall effect, (ii) Cross country generalization, not limited to Fox
table(!is.na(d1$participant))
##
## TRUE
## 4836
table(!is.na(d1$participant[d1$country_factor == "US"]))
##
## TRUE
## 3316
table(!is.na(d1$participant[d1$country_factor == "UK"]))
##
## TRUE
## 1520
describe(d1$age)
describe(d1$age[d1$country_factor == "US"])
describe(d1$age[d1$country_factor == "UK"])
(t <- table(d1$gender_factor))
##
## custom female male
## 16 2480 2053
round(prop.table(t), 3)
##
## custom female male
## 0.004 0.545 0.451
(t <- table(d1$gender_factor[d1$country_factor == "US"]))
##
## custom female male
## 6 1564 1477
round(prop.table(t), 3)
##
## custom female male
## 0.002 0.513 0.485
(t <- table(d1$gender_factor[d1$country_factor == "UK"]))
##
## custom female male
## 10 916 576
round(prop.table(t), 3)
##
## custom female male
## 0.007 0.610 0.383
(t <- table(d1$party_factor))
##
## Democrat Independent Republican
## 2268 916 1470
round(prop.table(t), 3)
##
## Democrat Independent Republican
## 0.487 0.197 0.316
(t <- table(d1$party_factor[d1$country_factor == "US"]))
##
## Democrat Independent Republican
## 1402 627 1118
round(prop.table(t), 3)
##
## Democrat Independent Republican
## 0.446 0.199 0.355
(t <- table(d1$party_factor[d1$country_factor == "UK"]))
##
## Democrat Independent Republican
## 866 289 352
round(prop.table(t), 3)
##
## Democrat Independent Republican
## 0.575 0.192 0.234
describe(d1$education)
describe(d1$education[d1$country_factor == "US"])
describe(d1$education[d1$country_factor == "UK"])
Not included here, media exposure asks participants to “Consider each of the media sources below. In general, how much do you get news about Covid-19 from each source?” on a scale from 1 (Not at all) to 3 (Somewhat) to 5 (A great deal).
The first step to creating the analytical media index is multiplying individual analytic thinking scores for each media outlet by participant rated exposure to that outlet, Then taking the proportion of each of these products (i.e., dividing by the 12 possible US outlets to be exposed to, or 8 outlets for the UK)
foxAnalyticalIndex = (foxNewsExposure x foxAnalyticalScore) (foxAnalyticalIndex + cnnAnalyticalIndex + msnbcAnalyticalIndex + …) / 12 total outlets
describe(d1$index_ANexp)
describe(d1$index_ANexp[d1$country_factor == "US"])
describe(d1$index_ANexp[d1$country_factor == "UK"])
symbolic ideology is an average of three items. They ask “How liberal/conservative…” (1) in general, (2) on social issues, and (3) on economic issues. Participants answered on a scale from -3 (Very liberal) to 0 (Moderate) to +3 (Very conservative).
print("US")
## [1] "US"
psych::alpha (data.frame(
d1$symbolic_beliefs_1[d1$country_factor == "US"],
d1$symbolic_beliefs_2[d1$country_factor == "US"],
d1$symbolic_beliefs_3[d1$country_factor == "US"]), cumulative = F, na.rm = T, delete = T) #alpha = .94
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d1$symbolic_beliefs_1[d1$country_factor ==
## "US"], d1$symbolic_beliefs_2[d1$country_factor == "US"],
## d1$symbolic_beliefs_3[d1$country_factor == "US"]), cumulative = F,
## na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.92 0.85 17 0.0017 0.089 1.6 0.86
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.94 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc)
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.89 0.89 0.80
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 0.92 0.92 0.86
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.94 0.94 0.89
## average_r S/N alpha se var.r
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.80 8 0.0039 NA
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 0.86 12 0.0027 NA
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.89 16 0.0020 NA
## med.r
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.80
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 0.86
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.89
##
## Item statistics
## n raw.r std.r r.cor r.drop
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 3162 0.97 0.97 0.95 0.92
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 3163 0.95 0.95 0.91 0.88
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 3163 0.93 0.93 0.88 0.85
## mean sd
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.060 1.7
## d1.symbolic_beliefs_2.d1.country_factor.....US.. -0.067 1.7
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.272 1.7
##
## Non missing response frequency for each item
## -3 -2 -1 0 1 2
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.08 0.13 0.09 0.38 0.09 0.13
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 0.10 0.14 0.12 0.33 0.10 0.13
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.06 0.11 0.09 0.35 0.13 0.16
## 3 miss
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.09 0.05
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 0.09 0.05
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.11 0.05
print("UK")
## [1] "UK"
psych::alpha (data.frame(
d1$symbolic_beliefs_1[d1$country_factor == "UK"],
d1$symbolic_beliefs_2[d1$country_factor == "UK"],
d1$symbolic_beliefs_3[d1$country_factor == "UK"]), cumulative = F, na.rm = T, delete = T)
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d1$symbolic_beliefs_1[d1$country_factor ==
## "UK"], d1$symbolic_beliefs_2[d1$country_factor == "UK"],
## d1$symbolic_beliefs_3[d1$country_factor == "UK"]), cumulative = F,
## na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.9 0.79 12 0.0037 -0.61 1.4 0.81
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.92 0.93
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc)
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 0.83 0.83 0.72
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 0.90 0.90 0.81
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 0.92 0.92 0.85
## average_r S/N alpha se var.r
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 0.72 5.0 0.0085 NA
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 0.81 8.7 0.0053 NA
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 0.85 11.6 0.0041 NA
## med.r
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 0.72
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 0.81
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 0.85
##
## Item statistics
## n raw.r std.r r.cor r.drop
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 1509 0.96 0.96 0.94 0.90
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 1509 0.92 0.92 0.87 0.82
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 1509 0.91 0.91 0.83 0.79
## mean sd
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. -0.64 1.4
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. -0.84 1.5
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. -0.35 1.5
##
## Non missing response frequency for each item
## -3 -2 -1 0 1 2
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 0.09 0.24 0.19 0.27 0.12 0.07
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 0.13 0.25 0.20 0.24 0.10 0.06
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 0.07 0.18 0.19 0.29 0.16 0.09
## 3 miss
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 0.01 0.01
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 0.01 0.01
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 0.02 0.01
describe(d1$ideology)
describe(d1$ideology[d1$country_factor == "US"])
describe(d1$ideology[d1$country_factor == "UK"])
trust in experts is an average of 3-items asking about how much participants trust experts, medicine, economics, public health, and science. The trust response scale ranges from -3 (strongly distrust) to 0 (Neither trust nor distrust) to (Strongly trust)
describe(d1$trustExpert)
describe(d1$trustExpert[d1$country_factor == "US"], na.rm = T)
describe(d1$trustExpert[d1$country_factor == "UK"], na.rm = T)
Media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns. Column two is raw scores, and column three is standardized scores.
Participants were asked “would you get a Covid-19 vaccine?” and answered on a scale from -3 (Definitely would not get it) to 0 (Undecided) to +3 (Definitely would get it).
describe(d1$vaxxAttitudes)
describe(d1$vaxxAttitudes[d1$country_factor == "US"])
describe(d1$vaxxAttitudes[d1$country_factor == "UK"])
USvUK (US = -.5, UK = +.5)
summary(m.s1.a.robust <- lm(vaxxAttitudes ~ index_ANexp.c * ideology.c + USvUK +
age.c + education.c, data = d1))
##
## Call:
## lm(formula = vaxxAttitudes ~ index_ANexp.c * ideology.c + USvUK +
## age.c + education.c, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7081 -1.3369 0.3965 1.5363 4.3853
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0251836 0.0315810 32.462 < 2e-16 ***
## index_ANexp.c 0.0051306 0.0004295 11.944 < 2e-16 ***
## ideology.c -0.2307232 0.0196799 -11.724 < 2e-16 ***
## USvUK 0.9023665 0.0690258 13.073 < 2e-16 ***
## age.c 0.0215370 0.0020142 10.693 < 2e-16 ***
## education.c 0.0525331 0.0110634 4.748 2.12e-06 ***
## index_ANexp.c:ideology.c 0.0012543 0.0002619 4.788 1.74e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.952 on 4462 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.1207, Adjusted R-squared: 0.1196
## F-statistic: 102.1 on 6 and 4462 DF, p-value: < 2.2e-16
tab_model(m.s1.a.robust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxAttitudes | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 1.025 | 0.032 | 0.963 – 1.087 | 32.462 | <0.001 | 4462.000 |
| index_ANexp.c | 0.005 | 0.000 | 0.004 – 0.006 | 11.944 | <0.001 | 4462.000 |
| ideology.c | -0.231 | 0.020 | -0.269 – -0.192 | -11.724 | <0.001 | 4462.000 |
| USvUK | 0.902 | 0.069 | 0.767 – 1.038 | 13.073 | <0.001 | 4462.000 |
| age.c | 0.022 | 0.002 | 0.018 – 0.025 | 10.693 | <0.001 | 4462.000 |
| education.c | 0.053 | 0.011 | 0.031 – 0.074 | 4.748 | <0.001 | 4462.000 |
|
index_ANexp.c * ideology.c |
0.001 | 0.000 | 0.001 – 0.002 | 4.788 | <0.001 | 4462.000 |
| Observations | 4469 | |||||
| R2 / R2 adjusted | 0.121 / 0.120 | |||||
summary(m.s1.b.robust <- lm(vaxxAttitudes ~ index_ANexp.c * ideology.c * USvUK +
age.c + education.c, data = d1))
##
## Call:
## lm(formula = vaxxAttitudes ~ index_ANexp.c * ideology.c * USvUK +
## age.c + education.c, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3370 -1.3492 0.4032 1.5282 4.4067
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0197428 0.0330645 30.841 < 2e-16 ***
## index_ANexp.c 0.0047055 0.0004899 9.605 < 2e-16 ***
## ideology.c -0.2257272 0.0222675 -10.137 < 2e-16 ***
## USvUK 0.8962025 0.0700062 12.802 < 2e-16 ***
## age.c 0.0213948 0.0020185 10.599 < 2e-16 ***
## education.c 0.0531431 0.0110745 4.799 1.65e-06 ***
## index_ANexp.c:ideology.c 0.0011419 0.0003204 3.564 0.000369 ***
## index_ANexp.c:USvUK -0.0018075 0.0009783 -1.848 0.064729 .
## ideology.c:USvUK 0.0064325 0.0439408 0.146 0.883620
## index_ANexp.c:ideology.c:USvUK -0.0001690 0.0006397 -0.264 0.791593
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.952 on 4459 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.1214, Adjusted R-squared: 0.1197
## F-statistic: 68.48 on 9 and 4459 DF, p-value: < 2.2e-16
tab_model(m.s1.a.robust, m.s1.b.robust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxAttitudes | vaxxAttitudes | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.025 | 0.032 | 0.963 – 1.087 | 32.462 | <0.001 | 4462.000 | 1.020 | 0.033 | 0.955 – 1.085 | 30.841 | <0.001 | 4459.000 |
| index_ANexp.c | 0.005 | 0.000 | 0.004 – 0.006 | 11.944 | <0.001 | 4462.000 | 0.005 | 0.000 | 0.004 – 0.006 | 9.605 | <0.001 | 4459.000 |
| ideology.c | -0.231 | 0.020 | -0.269 – -0.192 | -11.724 | <0.001 | 4462.000 | -0.226 | 0.022 | -0.269 – -0.182 | -10.137 | <0.001 | 4459.000 |
| USvUK | 0.902 | 0.069 | 0.767 – 1.038 | 13.073 | <0.001 | 4462.000 | 0.896 | 0.070 | 0.759 – 1.033 | 12.802 | <0.001 | 4459.000 |
| age.c | 0.022 | 0.002 | 0.018 – 0.025 | 10.693 | <0.001 | 4462.000 | 0.021 | 0.002 | 0.017 – 0.025 | 10.599 | <0.001 | 4459.000 |
| education.c | 0.053 | 0.011 | 0.031 – 0.074 | 4.748 | <0.001 | 4462.000 | 0.053 | 0.011 | 0.031 – 0.075 | 4.799 | <0.001 | 4459.000 |
|
index_ANexp.c * ideology.c |
0.001 | 0.000 | 0.001 – 0.002 | 4.788 | <0.001 | 4462.000 | 0.001 | 0.000 | 0.001 – 0.002 | 3.564 | <0.001 | 4459.000 |
| index_ANexp.c * USvUK | -0.002 | 0.001 | -0.004 – 0.000 | -1.848 | 0.065 | 4459.000 | ||||||
| ideology.c * USvUK | 0.006 | 0.044 | -0.080 – 0.093 | 0.146 | 0.884 | 4459.000 | ||||||
|
(index_ANexp.c ideology.c) USvUK |
-0.000 | 0.001 | -0.001 – 0.001 | -0.264 | 0.792 | 4459.000 | ||||||
| Observations | 4469 | 4469 | ||||||||||
| R2 / R2 adjusted | 0.121 / 0.120 | 0.121 / 0.120 | ||||||||||
summary(m.xy <- lm(vaxxAttitudes ~ index_ANexp.z +
ideology.z + USvUK + age.z + education.z, data = d1))
##
## Call:
## lm(formula = vaxxAttitudes ~ index_ANexp.z + ideology.z + USvUK +
## age.z + education.z, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6783 -1.3178 0.3948 1.5544 4.2232
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01028 0.03150 32.068 < 2e-16 ***
## index_ANexp.z 0.35835 0.02986 11.999 < 2e-16 ***
## ideology.z -0.35660 0.03066 -11.632 < 2e-16 ***
## USvUK 0.93011 0.06895 13.490 < 2e-16 ***
## age.z 0.33344 0.03230 10.325 < 2e-16 ***
## education.z 0.14015 0.03005 4.663 3.2e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.957 on 4463 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.1162, Adjusted R-squared: 0.1152
## F-statistic: 117.4 on 5 and 4463 DF, p-value: < 2.2e-16
summary(m.xm <- lm(trustExpert ~ index_ANexp.z +
ideology.z + USvUK + age.z + education.z, data = d1))
##
## Call:
## lm(formula = trustExpert ~ index_ANexp.z + ideology.z + USvUK +
## age.z + education.z, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6925 -0.6256 0.2825 0.9497 3.0967
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.69460 0.02198 77.107 < 2e-16 ***
## index_ANexp.z 0.19312 0.02083 9.270 < 2e-16 ***
## ideology.z -0.31151 0.02139 -14.566 < 2e-16 ***
## USvUK 0.58358 0.04810 12.133 < 2e-16 ***
## age.z 0.14460 0.02253 6.418 1.52e-10 ***
## education.z 0.13956 0.02097 6.657 3.14e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.365 on 4463 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.1213, Adjusted R-squared: 0.1203
## F-statistic: 123.2 on 5 and 4463 DF, p-value: < 2.2e-16
summary(m.xmy <- lm(vaxxAttitudes ~ trustExpert.z + index_ANexp.z + ideology.z +
USvUK + age.z + education.z, data = d1))
##
## Call:
## lm(formula = vaxxAttitudes ~ trustExpert.z + index_ANexp.z +
## ideology.z + USvUK + age.z + education.z, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7735 -1.1918 0.3258 1.3076 5.4251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93912 0.02938 31.966 < 2e-16 ***
## trustExpert.z 0.78471 0.02939 26.702 < 2e-16 ***
## index_ANexp.z 0.25559 0.02800 9.128 < 2e-16 ***
## ideology.z -0.19085 0.02914 -6.550 6.42e-11 ***
## USvUK 0.61960 0.06508 9.521 < 2e-16 ***
## age.z 0.25650 0.03013 8.513 < 2e-16 ***
## education.z 0.06589 0.02805 2.349 0.0189 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.817 on 4462 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.238, Adjusted R-squared: 0.237
## F-statistic: 232.3 on 6 and 4462 DF, p-value: < 2.2e-16
tab_model(m.xy, m.xm, m.xmy,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxAttitudes | trustExpert | vaxxAttitudes | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.010 | 0.032 | 0.949 – 1.072 | 32.068 | <0.001 | 4463.000 | 1.695 | 0.022 | 1.652 – 1.738 | 77.107 | <0.001 | 4463.000 | 0.939 | 0.029 | 0.882 – 0.997 | 31.966 | <0.001 | 4462.000 |
| index_ANexp.z | 0.358 | 0.030 | 0.300 – 0.417 | 11.999 | <0.001 | 4463.000 | 0.193 | 0.021 | 0.152 – 0.234 | 9.270 | <0.001 | 4463.000 | 0.256 | 0.028 | 0.201 – 0.310 | 9.128 | <0.001 | 4462.000 |
| ideology.z | -0.357 | 0.031 | -0.417 – -0.296 | -11.632 | <0.001 | 4463.000 | -0.312 | 0.021 | -0.353 – -0.270 | -14.566 | <0.001 | 4463.000 | -0.191 | 0.029 | -0.248 – -0.134 | -6.550 | <0.001 | 4462.000 |
| USvUK | 0.930 | 0.069 | 0.795 – 1.065 | 13.490 | <0.001 | 4463.000 | 0.584 | 0.048 | 0.489 – 0.678 | 12.133 | <0.001 | 4463.000 | 0.620 | 0.065 | 0.492 – 0.747 | 9.521 | <0.001 | 4462.000 |
| age.z | 0.333 | 0.032 | 0.270 – 0.397 | 10.325 | <0.001 | 4463.000 | 0.145 | 0.023 | 0.100 – 0.189 | 6.418 | <0.001 | 4463.000 | 0.257 | 0.030 | 0.197 – 0.316 | 8.513 | <0.001 | 4462.000 |
| education.z | 0.140 | 0.030 | 0.081 – 0.199 | 4.663 | <0.001 | 4463.000 | 0.140 | 0.021 | 0.098 – 0.181 | 6.657 | <0.001 | 4463.000 | 0.066 | 0.028 | 0.011 – 0.121 | 2.349 | 0.019 | 4462.000 |
| trustExpert.z | 0.785 | 0.029 | 0.727 – 0.842 | 26.702 | <0.001 | 4462.000 | ||||||||||||
| Observations | 4469 | 4469 | 4469 | |||||||||||||||
| R2 / R2 adjusted | 0.116 / 0.115 | 0.121 / 0.120 | 0.238 / 0.237 | |||||||||||||||
summary(m.xy <- lm(vaxxAttitudes ~ index_ANexp.c * ideology.c +
USvUK + age.c + education.c, data = d1))
##
## Call:
## lm(formula = vaxxAttitudes ~ index_ANexp.c * ideology.c + USvUK +
## age.c + education.c, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7081 -1.3369 0.3965 1.5363 4.3853
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0251836 0.0315810 32.462 < 2e-16 ***
## index_ANexp.c 0.0051306 0.0004295 11.944 < 2e-16 ***
## ideology.c -0.2307232 0.0196799 -11.724 < 2e-16 ***
## USvUK 0.9023665 0.0690258 13.073 < 2e-16 ***
## age.c 0.0215370 0.0020142 10.693 < 2e-16 ***
## education.c 0.0525331 0.0110634 4.748 2.12e-06 ***
## index_ANexp.c:ideology.c 0.0012543 0.0002619 4.788 1.74e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.952 on 4462 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.1207, Adjusted R-squared: 0.1196
## F-statistic: 102.1 on 6 and 4462 DF, p-value: < 2.2e-16
summary(m.xm <- lm(trustExpert ~ index_ANexp.c * ideology.c +
USvUK + age.c + education.c, data = d1))
##
## Call:
## lm(formula = trustExpert ~ index_ANexp.c * ideology.c + USvUK +
## age.c + education.c, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3331 -0.6186 0.2866 0.9480 3.2123
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7052211 0.0220280 77.411 < 2e-16 ***
## index_ANexp.c 0.0027588 0.0002996 9.208 < 2e-16 ***
## ideology.c -0.2013451 0.0137269 -14.668 < 2e-16 ***
## USvUK 0.5637911 0.0481461 11.710 < 2e-16 ***
## age.c 0.0095502 0.0014049 6.798 1.20e-11 ***
## education.c 0.0520792 0.0077169 6.749 1.68e-11 ***
## index_ANexp.c:ideology.c 0.0008944 0.0001827 4.895 1.02e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.361 on 4462 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.126, Adjusted R-squared: 0.1248
## F-statistic: 107.2 on 6 and 4462 DF, p-value: < 2.2e-16
summary(m.xmy <- lm(vaxxAttitudes ~ (trustExpert.c + index_ANexp.c) * ideology.c +
USvUK + age.c + education.c, data = d1))
##
## Call:
## lm(formula = vaxxAttitudes ~ (trustExpert.c + index_ANexp.c) *
## ideology.c + USvUK + age.c + education.c, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.671 -1.200 0.325 1.302 5.446
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9454010 0.0301096 31.399 < 2e-16 ***
## trustExpert.c 0.5286189 0.0200586 26.354 < 2e-16 ***
## index_ANexp.c 0.0036938 0.0004044 9.135 < 2e-16 ***
## ideology.c -0.1237554 0.0187824 -6.589 4.95e-11 ***
## USvUK 0.6054085 0.0651792 9.288 < 2e-16 ***
## age.c 0.0165169 0.0018831 8.771 < 2e-16 ***
## education.c 0.0247892 0.0103518 2.395 0.01668 *
## trustExpert.c:ideology.c -0.0071300 0.0116994 -0.609 0.54227
## index_ANexp.c:ideology.c 0.0008140 0.0002497 3.260 0.00112 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.815 on 4460 degrees of freedom
## (367 observations deleted due to missingness)
## Multiple R-squared: 0.2398, Adjusted R-squared: 0.2384
## F-statistic: 175.9 on 8 and 4460 DF, p-value: < 2.2e-16
tab_model(m.xy, m.xm, m.xmy,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxAttitudes | trustExpert | vaxxAttitudes | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.025 | 0.032 | 0.963 – 1.087 | 32.462 | <0.001 | 4462.000 | 1.705 | 0.022 | 1.662 – 1.748 | 77.411 | <0.001 | 4462.000 | 0.945 | 0.030 | 0.886 – 1.004 | 31.399 | <0.001 | 4460.000 |
| index_ANexp.c | 0.005 | 0.000 | 0.004 – 0.006 | 11.944 | <0.001 | 4462.000 | 0.003 | 0.000 | 0.002 – 0.003 | 9.208 | <0.001 | 4462.000 | 0.004 | 0.000 | 0.003 – 0.004 | 9.135 | <0.001 | 4460.000 |
| ideology.c | -0.231 | 0.020 | -0.269 – -0.192 | -11.724 | <0.001 | 4462.000 | -0.201 | 0.014 | -0.228 – -0.174 | -14.668 | <0.001 | 4462.000 | -0.124 | 0.019 | -0.161 – -0.087 | -6.589 | <0.001 | 4460.000 |
| USvUK | 0.902 | 0.069 | 0.767 – 1.038 | 13.073 | <0.001 | 4462.000 | 0.564 | 0.048 | 0.469 – 0.658 | 11.710 | <0.001 | 4462.000 | 0.605 | 0.065 | 0.478 – 0.733 | 9.288 | <0.001 | 4460.000 |
| age.c | 0.022 | 0.002 | 0.018 – 0.025 | 10.693 | <0.001 | 4462.000 | 0.010 | 0.001 | 0.007 – 0.012 | 6.798 | <0.001 | 4462.000 | 0.017 | 0.002 | 0.013 – 0.020 | 8.771 | <0.001 | 4460.000 |
| education.c | 0.053 | 0.011 | 0.031 – 0.074 | 4.748 | <0.001 | 4462.000 | 0.052 | 0.008 | 0.037 – 0.067 | 6.749 | <0.001 | 4462.000 | 0.025 | 0.010 | 0.004 – 0.045 | 2.395 | 0.017 | 4460.000 |
|
index_ANexp.c * ideology.c |
0.001 | 0.000 | 0.001 – 0.002 | 4.788 | <0.001 | 4462.000 | 0.001 | 0.000 | 0.001 – 0.001 | 4.895 | <0.001 | 4462.000 | 0.001 | 0.000 | 0.000 – 0.001 | 3.260 | 0.001 | 4460.000 |
| trustExpert.c | 0.529 | 0.020 | 0.489 – 0.568 | 26.354 | <0.001 | 4460.000 | ||||||||||||
|
trustExpert.c * ideology.c |
-0.007 | 0.012 | -0.030 – 0.016 | -0.609 | 0.542 | 4460.000 | ||||||||||||
| Observations | 4469 | 4469 | 4469 | |||||||||||||||
| R2 / R2 adjusted | 0.121 / 0.120 | 0.126 / 0.125 | 0.240 / 0.238 | |||||||||||||||
d.us <- d1[d1$country_factor == "US",]
d.us$ideology.c <- d.us$ideology - mean(d.us$ideology, na.rm = T)
d.us$index_ANexp.c <- d.us$index_ANexp - mean(d.us$index_ANexp, na.rm = T)
d.us$age.c <- d.us$age - mean(d.us$age, na.rm = T)
d.us$education.c <- d.us$education - mean(d.us$education, na.rm = T)
#run model
m.US <- lm(vaxxAttitudes ~ ideology.c * index_ANexp.c +
age.c + education.c, data = d.us)
#create plot
p <- plot_model(m.US, type = "pred",
terms = c("index_ANexp.c", "ideology.c [-1.59, 1.59]")) +
ggtitle("") +
ylab("") +
xlab("") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = c(.5, .2),
legend.direction = "horizontal",
legend.box = "horizontal",
legend.background = element_rect(fill = "white", color = "white"),
legend.title = element_blank())
p.US <- p + scale_color_manual(
labels = c("Liberal (-1 SD)", "Conservative (+1 SD)"),
values = c("blue", "red")) +
scale_fill_manual(values = c("blue", "red")) +
scale_x_continuous(breaks = c(-100, -50, 0, 50, 100, 150, 200, 240)) + #-87.82 235.66
scale_y_continuous(breaks = c(-3, -2, -1, 0, 1, 2, 3),
limits = c(-3, 3),
labels = c("Definitely
would not",
"Probably
would not",
"Leaning toward
would not",
"Undecided",
"Leaning toward
would",
"Probably
would",
"Definitely
would"))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p.US
d.uk <- d1[d1$country_factor == "UK",]
d.uk$ideology.c <- d.uk$ideology - mean(d.uk$ideology, na.rm = T)
d.uk$index_ANexp.c <- d.uk$index_ANexp - mean(d.uk$index_ANexp, na.rm = T)
d.uk$age.c <- d.uk$age - mean(d.uk$age, na.rm = T)
d.uk$education.c <- d.uk$education - mean(d.uk$education, na.rm = T)
#run model
m.UK <- lm(vaxxAttitudes ~ ideology.c * index_ANexp.c +
age.c + education.c, data = d1[d1$country_factor == "UK",])
#create plot
p <- plot_model(m.UK, type = "pred",
terms = c("index_ANexp.c", "ideology.c [-1.35, 1.35]")) +
ggtitle("") +
ylab("") +
xlab("") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
legend.background = element_rect(fill = "white", color = "white"),
legend.title = element_blank())
p.UK <- p + scale_color_manual(labels = NULL,
values = c("blue", "red")) +
scale_fill_manual(values = c("blue", "red")) +
scale_x_continuous(breaks = c(-100, -50, 0, 50, 100, 150, 200, 250, 270),
limits = c(-90, 270),
) + #-75.14, 284.47
scale_y_continuous(breaks = c(-3, -2, -1, 0, 1, 2, 3),
limits = c(-3, 3),
labels = c("Definitely
would not",
"Probably
would not",
"Leaning toward
would not",
"Undecided",
"Leaning toward
would",
"Probably
would",
"Definitely
would"))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p.UK
## Warning: Removed 4 row(s) containing missing values (geom_path).
p <- ggarrange(p.US, p.UK,
labels = c("United States: Willingness to get vaccinated ",
"United Kingdom: Willingness to get vaccinated"),
ncol = 2, nrow = 1, align = "hv",
common.legend = T)
## Warning: Removed 4 row(s) containing missing values (geom_path).
p