Problem 13.

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

library(ISLR2)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
library(ISLR2)
pairs(Weekly)

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

There are no substantial correlations except for a very high volume growth of trading from 1990 (0.087) and 2010 (9.328).

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

attach(Weekly)
Weekly.fit<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly,family=binomial)
summary(Weekly.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

The only statistically significant variable is Lag2. All others fail to reject the null hypothesis.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

logWeekly.prob= predict(Weekly.fit, type='response')
logWeekly.pred =rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
table(logWeekly.pred, Direction)
##               Direction
## logWeekly.pred Down  Up
##           Down   54  48
##           Up    430 557

The model predicted the up or down trend a total of 1,089 times (54+48+430+557). Of these predictions, a down trend was correctly predicted 54 times and an up trend was correctly predicted 557 times (54+557 = 611, 611 / 1089 = 56% accuracy). Up trends were correctly predicted 92% of the time (557/(48+557)), and Down trends were correctly predicted 11% of the time (54/(430+54)).

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train = (Year<2009)
Weekly.0910 <-Weekly[!train,]
Weekly.fit<-glm(Direction~Lag2, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
##               Direction.0910
## logWeekly.pred Down Up
##           Down    9  5
##           Up     34 56
mean(logWeekly.pred == Direction.0910)
## [1] 0.625

The training model correctly predicted trends 63% of the time, an improvement of 7 percentage points.

(e) Repeat (d) using LDA.

library(MASS)
Weeklylda.fit<-lda(Direction~Lag2, data=Weekly,family=binomial, subset=train)
Weeklylda.pred<-predict(Weeklylda.fit, Weekly.0910)
table(Weeklylda.pred$class, Direction.0910)
##       Direction.0910
##        Down Up
##   Down    9  5
##   Up     34 56
mean(Weeklylda.pred$class==Direction.0910)
## [1] 0.625

Using LDA gives the same result as the logistic regression model.

(f) Repeat (d) using QDA.

Weeklyqda.fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
Weeklyqda.pred = predict(Weeklyqda.fit, Weekly.0910)$class
table(Weeklyqda.pred, Direction.0910)
##               Direction.0910
## Weeklyqda.pred Down Up
##           Down    0  0
##           Up     43 61
mean(Weeklyqda.pred==Direction.0910)
## [1] 0.5865385

Using QDA gives a model with 59% accuracy, lower than LDA by 4 percentage points.

(g) Repeat (d) using KNN with K = 1.

library(class)
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=1)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   21 30
##         Up     22 31
mean(Weekknn.pred == Direction.0910)
## [1] 0.5

Using KNN gives a model with 50% accuracy, or random chance for up or down trend.

(h) Repeat (d) using naive Bayes.

library(e1071)
weeklynb.fit<-naiveBayes(Direction~Lag2,data=Weekly,subset=train) 
weeklynb.class<-predict(weeklynb.fit,Weekly.0910)
table(weeklynb.class,Direction.0910)
##               Direction.0910
## weeklynb.class Down Up
##           Down    0  0
##           Up     43 61
mean(weeklynb.class == Direction.0910)
## [1] 0.5865385

Using Naive Bayes gives a model with 62% accuracy.

(i) Which of these methods appears to provide the best results on this data?
The methods with highest accuracy rates provide the best results - this would be the logistic regression and LDA with rates of 63%.

(j) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.
Logistic regression with interaction Lag2 & Lag4

Weekly.fit<-glm(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
##               Direction.0910
## logWeekly.pred Down Up
##           Down    3  4
##           Up     40 57
mean(logWeekly.pred == Direction.0910)
## [1] 0.5769231

K=10

Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=10)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   17 21
##         Up     26 40
mean(Weekknn.pred == Direction.0910)
## [1] 0.5480769

Both experiments produce models with lower accuracy rates.

Problem 14.

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

library(ISLR2)
attach(Auto)
mpg01 <- ifelse( mpg > median(mpg), yes = 1, no = 0)
Auto <- data.frame(Auto, mpg01)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

cor(Auto[,-9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
par(mfrow=c(2,3))
boxplot(cylinders ~ mpg01, data = Auto, main = "Cylinders vs mpg01")
boxplot(displacement ~ mpg01, data = Auto, main = "Displacement vs mpg01")
boxplot(horsepower ~ mpg01, data = Auto, main = "Horsepower vs mpg01")
boxplot(weight ~ mpg01, data = Auto, main = "Weight vs mpg01")
boxplot(acceleration ~ mpg01, data = Auto, main = "Acceleration vs mpg01")
boxplot(year ~ mpg01, data = Auto, main = "Year vs mpg01")

The features that seem most likely to be useful in predicting mpg01 are Cylinders, displacement, weight, and horsepower.

(c) Split the data into a training set and a test set.

Auto <- data.frame(mpg01, apply(cbind(cylinders, weight, displacement, horsepower, acceleration), 2, scale), year)
train <-  (year %% 2 == 0) # if the year is even (%%)
test <-  !train
Auto.train <-  Auto[train,]
Auto.test <-  Auto[test,]
mpg01.test <-  mpg01[test]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

library(MASS)
lda.fit <-  lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, subset = train)
lda.pred <-  predict(lda.fit, Auto.test)
mean(lda.pred$class != mpg01.test)
## [1] 0.1263736

The test error of the model obtained is 12.6%.

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda.fit = qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, family=binomial, subset = train)
qda.pred = predict(qda.fit, Auto.train)$class
table(qda.pred, Auto.train$mpg01)
##         
## qda.pred   0   1
##        0  86   6
##        1  10 108
mean(qda.pred!= Auto.test$mpg01)
## [1] 0.3857143

The test error of the model obtained is 38.6%.

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

library(MASS)
glm.fit <-  glm(mpg01 ~ cylinders + weight + displacement + horsepower,data = Auto,family = binomial,subset = train)
glm.probs <-  predict(glm.fit, Auto.test, type = "response")
glm.pred <-  rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] <- 1
mean(glm.pred != mpg01.test)
## [1] 0.1208791

The test error of the model obtained is 12.1%.

(g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

mpg01nb.fit<-naiveBayes(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, subset = train) 
mpg01nb.class<-predict(mpg01nb.fit,Auto.test)
table(mpg01nb.class=mpg01.test)
## mpg01nb.class
##   0   1 
## 100  82
mean(mpg01nb.class !=mpg01.test)
## [1] 0.1263736

The test error of the naive Bayes model is 12.6%.

(h) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

library(class)
train.X <-  cbind(cylinders, weight, displacement, horsepower)[train,]
test.X <-  cbind(cylinders, weight, displacement, horsepower)[test,]
train.mpg01 <-  mpg01[train]
set.seed(1)

k=1

knn.pred <-  knn(train.X, test.X, train.mpg01, k = 1)
mean(knn.pred != mpg01.test)
## [1] 0.1538462

The test error of the k=1 model is 15.4%.

k=10

knn.pred <-  knn(train.X, test.X, train.mpg01, k = 10)
mean(knn.pred != mpg01.test)
## [1] 0.1648352

The test error of the k=1 model is 14.8%.

k=100

knn.pred <-  knn(train.X, test.X, train.mpg01, k = 100)
mean(knn.pred != mpg01.test)
## [1] 0.1428571

The test error of the k=1 model is 14.3%. K=100 seems to perform the best on this data set.

Problem 16.

Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings. Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.

summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
attach(Boston)
median_crime=median(crim)
crim_lvl <- rep(0, 506)
crim_lvl[crim > median_crime] = 1
crim_lvl <- as.factor(crim_lvl)
Boston_2 <- data.frame(Boston, crim_lvl)
detach(Boston)

pairs(Boston_2)

The nox, age, dis, medv variables appear to have strong correlation with crime rate.

set.seed(1)
train_13 <- rbinom(506, 1, 0.7)
Boston_2 <- cbind(Boston_2, train_13)
Boston.train <- Boston_2[train_13 == 1,]
Boston.test <- Boston_2[train_13 == 0,]
attach(Boston.train)

Logistic model:

log_13_fits <- glm(crim_lvl~nox + age + dis + medv, data = Boston.train, family = binomial)
summary(log_13_fits)
## 
## Call:
## glm(formula = crim_lvl ~ nox + age + dis + medv, family = binomial, 
##     data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.17404  -0.35742   0.00278   0.26418   2.53635  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -24.900404   4.019591  -6.195 5.84e-10 ***
## nox          38.426015   5.859800   6.558 5.47e-11 ***
## age           0.016253   0.009966   1.631   0.1029    
## dis           0.309361   0.164026   1.886   0.0593 .  
## medv          0.087237   0.028230   3.090   0.0020 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.02  on 359  degrees of freedom
## Residual deviance: 210.55  on 355  degrees of freedom
## AIC: 220.55
## 
## Number of Fisher Scoring iterations: 7

The age variable is not significant.

log_13_fits <- glm(crim_lvl~nox + dis + medv, data = Boston.train, family = binomial)
summary(log_13_fits)
## 
## Call:
## glm(formula = crim_lvl ~ nox + dis + medv, family = binomial, 
##     data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.19958  -0.39388   0.00252   0.26563   2.48475  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -23.94414    3.89175  -6.153 7.63e-10 ***
## nox          39.78032    5.77733   6.886 5.75e-12 ***
## dis           0.23393    0.15697   1.490  0.13615    
## medv          0.07713    0.02678   2.880  0.00398 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.02  on 359  degrees of freedom
## Residual deviance: 213.25  on 356  degrees of freedom
## AIC: 221.25
## 
## Number of Fisher Scoring iterations: 7

The dis variable is not significant.

log_13_fits <- glm(crim_lvl~nox  + medv, data = Boston.train, family = binomial)
summary(log_13_fits)
## 
## Call:
## glm(formula = crim_lvl ~ nox + medv, family = binomial, data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.17657  -0.38729   0.00523   0.30375   2.65695  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -19.74864    2.42833  -8.133  4.2e-16 ***
## nox          33.97633    3.88025   8.756  < 2e-16 ***
## medv          0.06605    0.02524   2.617  0.00887 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.02  on 359  degrees of freedom
## Residual deviance: 215.41  on 357  degrees of freedom
## AIC: 221.41
## 
## Number of Fisher Scoring iterations: 6
detach(Boston.train)

log_13_prob <- predict(log_13_fits, Boston.test, type = 'response')
log_13_preds <- rep(0, 146)
log_13_preds[log_13_prob > 0.5] = 1

dat <- matrix(data=table(log_13_preds, Boston.test$crim_lvl), nrow=2, ncol=2, 
              dimnames=list(c("Below median", "Above median"), c("Below", "Above")))
names(dimnames(dat)) <- c("predicted", "observed")
print(dat)
##               observed
## predicted      Below Above
##   Below median    63    16
##   Above median    12    55

The model’s error rate is (16+12)/146, or 0.1917808 = 19.2%.

The nox and medv predictors are significant. As the nox variable increases, the probability of an above median crime rate for the neighborhood increases. As the median value of owner-occupied homes increases, the probability for high crime rate also increases.

LDA Analysis:

lda_13_fits <- lda(crim_lvl~nox + age+ dis+medv, data = Boston_2, subset= (train_13==1))
lda_13_fits
## Call:
## lda(crim_lvl ~ nox + age + dis + medv, data = Boston_2, subset = (train_13 == 
##     1))
## 
## Prior probabilities of groups:
##         0         1 
## 0.4944444 0.5055556 
## 
## Group means:
##         nox      age      dis     medv
## 0 0.4690051 51.33371 5.241056 24.95618
## 1 0.6401758 86.26044 2.498684 20.19670
## 
## Coefficients of linear discriminants:
##              LD1
## nox   9.32383649
## age   0.01342745
## dis  -0.08315746
## medv  0.01499271
lda_13_preds <- predict(lda_13_fits, Boston.test)
lda_13_class <- lda_13_preds$class

dat <- matrix(data=table(lda_13_class, Boston.test$crim_lvl), nrow=2, ncol=2, 
              dimnames=list(c("Below median", "Above median"), c("Below", "Above")))
names(dimnames(dat)) <- c("predicted", "observed")
print(dat)
##               observed
## predicted      Below Above
##   Below median    62    14
##   Above median    13    57

The error rate is (14+13)/146 = 0.1849315 or 18.5%.

Through LDA Analysis, the variables nox, age, and medv have positive correlation. The dis variable has negative correlation. The error rate is slightly lower than the logistic model.

Naive Bayes:

bosnb.fit<-naiveBayes(crim_lvl~nox + age+ dis+medv, data = Boston_2, subset= (train_13==1)) 
bosnb.class<-predict(bosnb.fit,Boston.test)
dat <- matrix(data=table(bosnb.class, Boston.test$crim_lvl), nrow=2, ncol=2, 
              dimnames=list(c("Below median", "Above median"), c("Below", "Above")))
names(dimnames(dat)) <- c("predicted", "observed")
print(dat)
##               observed
## predicted      Below Above
##   Below median    59     8
##   Above median    16    63

The error rate is (8+16)/146 = 0.16438 or 16.4%.

K Nearest Neighbors, k=3:

train.x_13 <- cbind(Boston.train$nox, Boston.train$tax, Boston.train$pratio)
test.x_13 <- cbind(Boston.test$nox, Boston.test$tax, Boston.test$pratio)
set.seed(1)
knn_pred_13 <- knn(train.x_13, test.x_13, Boston.train$crim_lvl, k=3)
table(knn_pred_13, Boston.test$crim_lvl)
##            
## knn_pred_13  0  1
##           0 71  5
##           1  4 66

The error rate is (4+5)/146 = 0.06164384, or 6.16%.

K Nearest Neighbors, k=5:

train.x_13 <- cbind(Boston.train$nox, Boston.train$tax, Boston.train$pratio)
test.x_13 <- cbind(Boston.test$nox, Boston.test$tax, Boston.test$pratio)
set.seed(1)
knn_pred_13 <- knn(train.x_13, test.x_13, Boston.train$crim_lvl, k=5)
table(knn_pred_13, Boston.test$crim_lvl)
##            
## knn_pred_13  0  1
##           0 69  5
##           1  6 66

The error rate is (5+6)/146 = 0.07534247, or 7.53%.

The KNN models give a lower error rate than logistic regression or LDA - I was unable to run naive Bayes. While KNN does not give analysis on significant predictors, it does tell us that we can attempt to lower the crime rate of a community by looking at the three nearest neighboring communities’ air porllution, tax rates, and school funding.