## [1] 3860
##
## custom female male
## 6 1681 1655
##
## custom female male
## 0.002 0.503 0.495
##
## asian black latin natAmer other pacIsl white
## 293 446 288 27 47 16 2224
##
## asian black latin natAmer other pacIsl white
## 0.088 0.133 0.086 0.008 0.014 0.005 0.666
##
## Democrat Independent Republican
## 1533 674 1238
##
## Democrat Independent Republican
## 0.445 0.196 0.359
Not included here, but asked in all 3 waves, media exposure asks participants to “Consider each of the media sources below. In general, how much do you get news about Covid-19 from each source?” on a scale from 1 (Not at all) to 3 (Somewhat) to 5 (A great deal).
Collected in wave 1 (July - August 2020), the first step to creating the analytical media index is multiplying individual analytic thinking scores for each media outlet by participant rated exposure to that outlet, Then taking the proportion of each of these products (i.e., dividing by the 12 possible US outlets to be exposed to)
foxAnalyticalIndex = (foxNewsExposure x foxAnalyticalScore) (foxAnalyticalIndex + cnnAnalyticalIndex + msnbcAnalyticalIndex + …) / 12 total outletsAsked during our wave 1 survey (July-August 2020), symbolic ideology is an average of three items. They ask “How liberal/conservative…” (1) in general, (2) on social issues, and (3) on economic issues. Participants answered on a scale from -3 (Very liberal) to 0 (Moderate) to +3 (Very conservative).
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$symbolic_beliefs_1, d$symbolic_beliefs_2,
## d$symbolic_beliefs_3), cumulative = F, na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.93 0.85 17 0.0016 0.11 1.6 0.86
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.95 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## d.symbolic_beliefs_1 0.89 0.89 0.80 0.80 8.2 0.0035 NA
## d.symbolic_beliefs_2 0.92 0.92 0.86 0.86 12.1 0.0025 NA
## d.symbolic_beliefs_3 0.94 0.94 0.89 0.89 17.0 0.0018 NA
## med.r
## d.symbolic_beliefs_1 0.80
## d.symbolic_beliefs_2 0.86
## d.symbolic_beliefs_3 0.89
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.symbolic_beliefs_1 3462 0.97 0.97 0.95 0.92 0.081 1.7
## d.symbolic_beliefs_2 3463 0.95 0.95 0.91 0.88 -0.041 1.7
## d.symbolic_beliefs_3 3463 0.93 0.93 0.88 0.85 0.292 1.7
##
## Non missing response frequency for each item
## -3 -2 -1 0 1 2 3 miss
## d.symbolic_beliefs_1 0.07 0.13 0.08 0.38 0.10 0.13 0.10 0.1
## d.symbolic_beliefs_2 0.09 0.14 0.12 0.33 0.10 0.13 0.09 0.1
## d.symbolic_beliefs_3 0.06 0.11 0.09 0.35 0.13 0.16 0.11 0.1
Asked during our wave 3 survey (March 2022), trust in science is an average of 15-items. Examples range from trust in the scientific method (e.g., “We cannot trust science because it moves too slowly”) to trust in scientists themselves (e.g., “We should trust that scientists are being ethical in their work”). Participants answered on a scale from 1 (strongly disagree) to 3 (neutral) to 5 (strongly agree).
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$sciTrust_1, d$sciTrust_2, d$sciTrust_3,
## d$sciTrust_4, d$sciTrust_5, d$sciTrust_6, d$sciTrust_7, d$sciTrust_8,
## d$sciTrust_9, d$sciTrust_10, d$sciTrust_11, d$sciTrust_12,
## d$sciTrust_13, d$sciTrust_14, d$sciTrust_15), cumulative = F,
## na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.95 0.5 15 0.0015 3.5 0.82 0.5
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.94 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## d.sciTrust_1 0.94 0.94 0.95 0.51 15 0.0015 0.021 0.51
## d.sciTrust_2 0.93 0.93 0.95 0.49 14 0.0016 0.022 0.49
## d.sciTrust_3 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_4 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_5 0.93 0.93 0.95 0.49 14 0.0016 0.022 0.49
## d.sciTrust_6 0.94 0.93 0.95 0.51 14 0.0015 0.021 0.53
## d.sciTrust_7 0.93 0.93 0.95 0.50 14 0.0015 0.021 0.51
## d.sciTrust_8 0.94 0.94 0.95 0.51 15 0.0015 0.020 0.53
## d.sciTrust_9 0.94 0.94 0.95 0.51 15 0.0015 0.019 0.53
## d.sciTrust_10 0.94 0.93 0.95 0.51 14 0.0015 0.021 0.53
## d.sciTrust_11 0.93 0.93 0.95 0.49 13 0.0016 0.023 0.48
## d.sciTrust_12 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_13 0.93 0.93 0.95 0.49 13 0.0016 0.021 0.49
## d.sciTrust_14 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_15 0.93 0.93 0.95 0.51 14 0.0016 0.022 0.49
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.sciTrust_1 1077 0.65 0.64 0.60 0.59 3.3 1.16
## d.sciTrust_2 1077 0.81 0.80 0.79 0.78 3.2 1.23
## d.sciTrust_3 1075 0.78 0.77 0.75 0.74 3.6 1.11
## d.sciTrust_4 1075 0.72 0.70 0.68 0.66 3.2 1.19
## d.sciTrust_5 1075 0.81 0.80 0.79 0.77 3.5 1.19
## d.sciTrust_6 1077 0.68 0.70 0.68 0.63 3.7 1.00
## d.sciTrust_7 1071 0.72 0.74 0.73 0.68 3.6 1.01
## d.sciTrust_8 1073 0.64 0.66 0.64 0.58 3.6 1.06
## d.sciTrust_9 1076 0.62 0.64 0.62 0.57 3.5 0.96
## d.sciTrust_10 1077 0.68 0.69 0.68 0.63 3.5 1.06
## d.sciTrust_11 1075 0.83 0.83 0.81 0.80 3.5 1.19
## d.sciTrust_12 1075 0.76 0.75 0.73 0.71 3.2 1.19
## d.sciTrust_13 1075 0.84 0.83 0.83 0.81 3.3 1.17
## d.sciTrust_14 1072 0.73 0.72 0.69 0.68 3.2 1.19
## d.sciTrust_15 1073 0.70 0.70 0.68 0.66 3.8 1.04
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## d.sciTrust_1 0.08 0.16 0.30 0.30 0.16 0.72
## d.sciTrust_2 0.11 0.17 0.27 0.28 0.16 0.72
## d.sciTrust_3 0.05 0.10 0.28 0.32 0.24 0.72
## d.sciTrust_4 0.09 0.18 0.32 0.24 0.18 0.72
## d.sciTrust_5 0.07 0.12 0.27 0.29 0.25 0.72
## d.sciTrust_6 0.04 0.07 0.26 0.41 0.22 0.72
## d.sciTrust_7 0.04 0.07 0.29 0.40 0.19 0.72
## d.sciTrust_8 0.06 0.08 0.27 0.41 0.18 0.72
## d.sciTrust_9 0.04 0.06 0.39 0.36 0.14 0.72
## d.sciTrust_10 0.05 0.09 0.30 0.38 0.18 0.72
## d.sciTrust_11 0.07 0.13 0.25 0.31 0.23 0.72
## d.sciTrust_12 0.09 0.17 0.31 0.26 0.16 0.72
## d.sciTrust_13 0.08 0.16 0.31 0.27 0.18 0.72
## d.sciTrust_14 0.09 0.18 0.31 0.25 0.17 0.72
## d.sciTrust_15 0.04 0.05 0.26 0.33 0.32 0.72
Collected during wave 1 (July - August 2020), media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns. Column two is raw scores, and column three is standardized scores.
Collected during wave 2 (November 2020), media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns. Column two is raw scores, and column three is standardized scores.
Collected during wave 1 (July - August 2020), participants were asked “would you get a Covid-19 vaccine?” and answered on a scale from -3 (Definitely would not get it) to 0 (Undecided) to +3 (Definitely would get it).
Collected during wave 2 (November 2020), participants were asked “If a Covid-19 vaccine were available today, would you get it?” and answered on a scale from -3 (Definitely would not get it) to 0 (Completely undecided) to +3 (Definitely would get it).
##
## Pearson's product-moment correlation
##
## data: d$vaxxAttitudes_w1 and d$vaxxAttitudes_w2
## t = 53.555, df = 2493, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7126403 0.7491665
## sample estimates:
## cor
## 0.7314276
Collected during wave 3 (March 2022), vaccine behavior is a collective measure of branched questions given to participants.
1 = not vaccinated
2 = partially vaccinated (e.g., 1 Moderna shot, but not the 2nd)
3 = fully vaccinated (e.g., 1 Johnson & Johnson shot, or 2 Modern/Pfizer shots)
4 = fully vaccinated and boosted
describe(d$vaxxBehavior)
Collected during wave 1 (July-August 2020), risk perceptions is an average of 3-items. The scale ranges from 1 (Not severe at all) to 4 (Moderately severe) to 7 (Catastrophic).
1. How severe do you think the health consequences to American society will be of the Covid-19 pandemic (e.g., number of deaths, hospitalizations)?
2. How severe do you think the economic consequences to American society will be of the Covid-19 pandemic (e.g., job loss, businesses shutting down, and falling stock markets)?
3. How severe have the economic consequences of the Covid-19 pandemic been to you personally (e.g., job loss, businesses shutting down, and falling stock markets)?
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$risk3_w1, d$risk4_w1, d$risk5_w1),
## cumulative = F, na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.64 0.65 0.57 0.38 1.9 0.01 4.3 1.3 0.33
##
## lower alpha upper 95% confidence boundaries
## 0.62 0.64 0.66
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## d.risk3_w1 0.48 0.50 0.33 0.33 0.99 0.016 NA 0.33
## d.risk4_w1 0.48 0.48 0.31 0.31 0.92 0.017 NA 0.31
## d.risk5_w1 0.67 0.67 0.51 0.51 2.06 0.011 NA 0.51
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.risk3_w1 3469 0.78 0.79 0.63 0.48 4.5 1.7
## d.risk4_w1 3459 0.76 0.80 0.65 0.51 5.1 1.4
## d.risk5_w1 3455 0.76 0.71 0.45 0.37 3.3 1.9
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## d.risk3_w1 0.05 0.10 0.12 0.17 0.22 0.21 0.13 0.1
## d.risk4_w1 0.02 0.04 0.08 0.15 0.26 0.29 0.17 0.1
## d.risk5_w1 0.24 0.20 0.12 0.16 0.13 0.09 0.06 0.1
Collected during wave 2 (November 2020), participants were asked the same questions as listed above.
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$risk3_w2, d$risk4_w2, d$risk5_w2),
## cumulative = F, na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.64 0.66 0.58 0.39 1.9 0.01 4.2 1.2 0.36
##
## lower alpha upper 95% confidence boundaries
## 0.62 0.64 0.66
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## d.risk3_w2 0.52 0.53 0.36 0.36 1.13 0.015 NA 0.36
## d.risk4_w2 0.46 0.46 0.30 0.30 0.86 0.017 NA 0.30
## d.risk5_w2 0.67 0.68 0.51 0.51 2.10 0.010 NA 0.51
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.risk3_w2 2720 0.78 0.78 0.62 0.47 4.6 1.7
## d.risk4_w2 2718 0.77 0.81 0.67 0.54 5.0 1.4
## d.risk5_w2 2721 0.75 0.72 0.46 0.38 3.0 1.8
Collected during wave 3 (March 2020), participants were asked the same questions as listed above.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$risk3_w3, d$risk4_w3, d$risk5_w3),
## cumulative = F, na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.62 0.63 0.56 0.37 1.7 0.011 3.7 1.2 0.39
##
## lower alpha upper 95% confidence boundaries
## 0.6 0.62 0.65
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## d.risk3_w3 0.55 0.56 0.39 0.39 1.27 0.014 NA 0.39
## d.risk4_w3 0.38 0.38 0.24 0.24 0.62 0.020 NA 0.24
## d.risk5_w3 0.64 0.64 0.47 0.47 1.81 0.011 NA 0.47
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.risk3_w3 1335 0.74 0.75 0.55 0.41 4.1 1.6
## d.risk4_w3 1336 0.80 0.82 0.69 0.54 4.3 1.5
## d.risk5_w3 1336 0.74 0.71 0.46 0.36 2.8 1.8
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## d.risk3_w3 0.06 0.11 0.17 0.23 0.23 0.13 0.07 0.65
## d.risk4_w3 0.04 0.08 0.17 0.25 0.24 0.15 0.06 0.65
## d.risk5_w3 0.31 0.20 0.15 0.14 0.10 0.06 0.04 0.65
Key aims: 1) Replication, proximity vaccine, 2) stronger causal evidence w/ longitudinal data
summary(m.s2.a <- lm(vaxxAttitudes_w2.c ~ index_ANexp_w2.c * ideology.c +
age.c + education.c + white_.5, data = d))
##
## Call:
## lm(formula = vaxxAttitudes_w2.c ~ index_ANexp_w2.c * ideology.c +
## age.c + education.c + white_.5, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8466 -1.4224 0.0855 1.6579 4.3979
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0841205 0.0450387 -1.868 0.061919 .
## index_ANexp_w2.c 0.0060499 0.0006134 9.862 < 2e-16 ***
## ideology.c -0.0981857 0.0260865 -3.764 0.000171 ***
## age.c 0.0243208 0.0027558 8.825 < 2e-16 ***
## education.c 0.0497351 0.0157864 3.150 0.001650 **
## white_.5 0.3811722 0.0914717 4.167 3.19e-05 ***
## index_ANexp_w2.c:ideology.c 0.0003666 0.0003359 1.091 0.275241
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 2441 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.08306, Adjusted R-squared: 0.08081
## F-statistic: 36.85 on 6 and 2441 DF, p-value: < 2.2e-16
tab_model(m.s2.a)
| vaxxAttitudes_w2.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.08 | -0.17 – 0.00 | 0.062 |
| index_ANexp_w2.c | 0.01 | 0.00 – 0.01 | <0.001 |
| ideology.c | -0.10 | -0.15 – -0.05 | <0.001 |
| age.c | 0.02 | 0.02 – 0.03 | <0.001 |
| education.c | 0.05 | 0.02 – 0.08 | 0.002 |
| white_.5 | 0.38 | 0.20 – 0.56 | <0.001 |
|
index_ANexp_w2.c * ideology.c |
0.00 | -0.00 – 0.00 | 0.275 |
| Observations | 2448 | ||
| R2 / R2 adjusted | 0.083 / 0.081 | ||
summary(m.s2.b <- lm(vaxxAttitudes_w2.c ~ index_ANexp_w2.c * ideology.c +
index_ANexp_w1 + vaxxAttitudes_w1.c +
age.c + education.c + white_.5, data = d))
##
## Call:
## lm(formula = vaxxAttitudes_w2.c ~ index_ANexp_w2.c * ideology.c +
## index_ANexp_w1 + vaxxAttitudes_w1.c + age.c + education.c +
## white_.5, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1857 -0.8324 0.0467 0.9249 5.4213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0167435 0.0590299 -0.284 0.776707
## index_ANexp_w2.c 0.0021739 0.0005881 3.697 0.000223 ***
## ideology.c 0.0720692 0.0188143 3.831 0.000131 ***
## index_ANexp_w1 -0.0007884 0.0005655 -1.394 0.163390
## vaxxAttitudes_w1.c 0.7085314 0.0143979 49.211 < 2e-16 ***
## age.c 0.0057973 0.0019886 2.915 0.003586 **
## education.c -0.0057215 0.0112294 -0.510 0.610442
## white_.5 0.1395160 0.0649565 2.148 0.031825 *
## index_ANexp_w2.c:ideology.c -0.0001620 0.0002387 -0.679 0.497250
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.422 on 2439 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.5412, Adjusted R-squared: 0.5397
## F-statistic: 359.7 on 8 and 2439 DF, p-value: < 2.2e-16
tab_model(m.s2.b)
| vaxxAttitudes_w2.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.02 | -0.13 – 0.10 | 0.777 |
| index_ANexp_w2.c | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | 0.07 | 0.04 – 0.11 | <0.001 |
| index_ANexp_w1 | -0.00 | -0.00 – 0.00 | 0.163 |
| vaxxAttitudes_w1.c | 0.71 | 0.68 – 0.74 | <0.001 |
| age.c | 0.01 | 0.00 – 0.01 | 0.004 |
| education.c | -0.01 | -0.03 – 0.02 | 0.610 |
| white_.5 | 0.14 | 0.01 – 0.27 | 0.032 |
|
index_ANexp_w2.c * ideology.c |
-0.00 | -0.00 – 0.00 | 0.497 |
| Observations | 2448 | ||
| R2 / R2 adjusted | 0.541 / 0.540 | ||
summary(m1.xy <- lm(vaxxAttitudes_w2.c ~ index_ANexp_w2.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxAttitudes_w2.c ~ index_ANexp_w2.c + ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8307 -1.4118 0.0874 1.6673 4.3363
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0936105 0.0441930 -2.118 0.034257 *
## index_ANexp_w2.c 0.0060133 0.0006125 9.817 < 2e-16 ***
## ideology.c -0.0975037 0.0260801 -3.739 0.000189 ***
## age.c 0.0241163 0.0027495 8.771 < 2e-16 ***
## white_.5 0.3758579 0.0913455 4.115 4.01e-05 ***
## education.c 0.0495724 0.0157863 3.140 0.001708 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 2442 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.08261, Adjusted R-squared: 0.08073
## F-statistic: 43.98 on 5 and 2442 DF, p-value: < 2.2e-16
summary(m1.xm <- lm(trustExpert_w2.c ~ index_ANexp_w2.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = trustExpert_w2.c ~ index_ANexp_w2.c + ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7656 -0.6941 0.3171 0.9331 3.1169
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0373385 0.0297462 -1.255 0.209513
## index_ANexp_w2.c 0.0043281 0.0004123 10.497 < 2e-16 ***
## ideology.c -0.2511731 0.0175497 -14.312 < 2e-16 ***
## age.c 0.0135169 0.0018505 7.304 3.75e-13 ***
## white_.5 0.2501985 0.0614912 4.069 4.87e-05 ***
## education.c 0.0380858 0.0106249 3.585 0.000344 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.353 on 2443 degrees of freedom
## (1411 observations deleted due to missingness)
## Multiple R-squared: 0.1578, Adjusted R-squared: 0.1561
## F-statistic: 91.57 on 5 and 2443 DF, p-value: < 2.2e-16
summary(m1.xmy <- lm(vaxxAttitudes_w2.c ~ trustExpert_w2.c + index_ANexp_w2.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxAttitudes_w2.c ~ trustExpert_w2.c + index_ANexp_w2.c +
## ideology.c + age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9849 -1.3933 0.1412 1.5834 4.6127
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0808941 0.0429767 -1.882 0.05992 .
## trustExpert_w2.c 0.3494156 0.0292435 11.948 < 2e-16 ***
## index_ANexp_w2.c 0.0045032 0.0006088 7.397 1.90e-13 ***
## ideology.c -0.0100922 0.0263888 -0.382 0.70217
## age.c 0.0193674 0.0027024 7.167 1.01e-12 ***
## white_.5 0.2882353 0.0891065 3.235 0.00123 **
## education.c 0.0364180 0.0153866 2.367 0.01802 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.954 on 2441 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.1333, Adjusted R-squared: 0.1312
## F-statistic: 62.57 on 6 and 2441 DF, p-value: < 2.2e-16
tab_model(m1.xy, m1.xm, m1.xmy)
| vaxxAttitudes_w2.c | trustExpert_w2.c | vaxxAttitudes_w2.c | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | -0.09 | -0.18 – -0.01 | 0.034 | -0.04 | -0.10 – 0.02 | 0.210 | -0.08 | -0.17 – 0.00 | 0.060 |
| index_ANexp_w2.c | 0.01 | 0.00 – 0.01 | <0.001 | 0.00 | 0.00 – 0.01 | <0.001 | 0.00 | 0.00 – 0.01 | <0.001 |
| ideology.c | -0.10 | -0.15 – -0.05 | <0.001 | -0.25 | -0.29 – -0.22 | <0.001 | -0.01 | -0.06 – 0.04 | 0.702 |
| age.c | 0.02 | 0.02 – 0.03 | <0.001 | 0.01 | 0.01 – 0.02 | <0.001 | 0.02 | 0.01 – 0.02 | <0.001 |
| white_.5 | 0.38 | 0.20 – 0.55 | <0.001 | 0.25 | 0.13 – 0.37 | <0.001 | 0.29 | 0.11 – 0.46 | 0.001 |
| education.c | 0.05 | 0.02 – 0.08 | 0.002 | 0.04 | 0.02 – 0.06 | <0.001 | 0.04 | 0.01 – 0.07 | 0.018 |
| trustExpert_w2.c | 0.35 | 0.29 – 0.41 | <0.001 | ||||||
| Observations | 2448 | 2449 | 2448 | ||||||
| R2 / R2 adjusted | 0.083 / 0.081 | 0.158 / 0.156 | 0.133 / 0.131 | ||||||
summary(m2.xy <- lm(vaxxAttitudes_w2.c ~ index_ANexp_w2.c * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxAttitudes_w2.c ~ index_ANexp_w2.c * ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8466 -1.4224 0.0855 1.6579 4.3979
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0841205 0.0450387 -1.868 0.061919 .
## index_ANexp_w2.c 0.0060499 0.0006134 9.862 < 2e-16 ***
## ideology.c -0.0981857 0.0260865 -3.764 0.000171 ***
## age.c 0.0243208 0.0027558 8.825 < 2e-16 ***
## white_.5 0.3811722 0.0914717 4.167 3.19e-05 ***
## education.c 0.0497351 0.0157864 3.150 0.001650 **
## index_ANexp_w2.c:ideology.c 0.0003666 0.0003359 1.091 0.275241
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 2441 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.08306, Adjusted R-squared: 0.08081
## F-statistic: 36.85 on 6 and 2441 DF, p-value: < 2.2e-16
summary(m2.xm <- lm(trustExpert_w2.c ~ index_ANexp_w2.c * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = trustExpert_w2.c ~ index_ANexp_w2.c * ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7001 -0.6824 0.3385 0.9194 3.2877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0108956 0.0301984 -0.361 0.718281
## index_ANexp_w2.c 0.0044294 0.0004113 10.769 < 2e-16 ***
## ideology.c -0.2530127 0.0174848 -14.470 < 2e-16 ***
## age.c 0.0140900 0.0018475 7.626 3.44e-14 ***
## white_.5 0.2650083 0.0613346 4.321 1.62e-05 ***
## education.c 0.0385134 0.0105831 3.639 0.000279 ***
## index_ANexp_w2.c:ideology.c 0.0010195 0.0002252 4.527 6.26e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.348 on 2442 degrees of freedom
## (1411 observations deleted due to missingness)
## Multiple R-squared: 0.1648, Adjusted R-squared: 0.1628
## F-statistic: 80.33 on 6 and 2442 DF, p-value: < 2.2e-16
summary(m2.xmy <- lm(vaxxAttitudes_w2.c ~ (trustExpert_w2.c + index_ANexp_w2.c) * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxAttitudes_w2.c ~ (trustExpert_w2.c + index_ANexp_w2.c) *
## ideology.c + age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9811 -1.3947 0.1519 1.5914 4.7361
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0904156 0.0446772 -2.024 0.04310 *
## trustExpert_w2.c 0.3565625 0.0300758 11.855 < 2e-16 ***
## index_ANexp_w2.c 0.0045180 0.0006106 7.400 1.87e-13 ***
## ideology.c -0.0068887 0.0265834 -0.259 0.79555
## age.c 0.0191589 0.0027186 7.047 2.37e-12 ***
## white_.5 0.2831654 0.0894105 3.167 0.00156 **
## education.c 0.0357191 0.0154039 2.319 0.02049 *
## trustExpert_w2.c:ideology.c -0.0197259 0.0176170 -1.120 0.26295
## index_ANexp_w2.c:ideology.c 0.0001283 0.0003434 0.374 0.70878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.954 on 2439 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.1337, Adjusted R-squared: 0.1309
## F-statistic: 47.07 on 8 and 2439 DF, p-value: < 2.2e-16
tab_model(m2.xy, m2.xm, m2.xmy)
| vaxxAttitudes_w2.c | trustExpert_w2.c | vaxxAttitudes_w2.c | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | -0.08 | -0.17 – 0.00 | 0.062 | -0.01 | -0.07 – 0.05 | 0.718 | -0.09 | -0.18 – -0.00 | 0.043 |
| index_ANexp_w2.c | 0.01 | 0.00 – 0.01 | <0.001 | 0.00 | 0.00 – 0.01 | <0.001 | 0.00 | 0.00 – 0.01 | <0.001 |
| ideology.c | -0.10 | -0.15 – -0.05 | <0.001 | -0.25 | -0.29 – -0.22 | <0.001 | -0.01 | -0.06 – 0.05 | 0.796 |
| age.c | 0.02 | 0.02 – 0.03 | <0.001 | 0.01 | 0.01 – 0.02 | <0.001 | 0.02 | 0.01 – 0.02 | <0.001 |
| white_.5 | 0.38 | 0.20 – 0.56 | <0.001 | 0.27 | 0.14 – 0.39 | <0.001 | 0.28 | 0.11 – 0.46 | 0.002 |
| education.c | 0.05 | 0.02 – 0.08 | 0.002 | 0.04 | 0.02 – 0.06 | <0.001 | 0.04 | 0.01 – 0.07 | 0.020 |
|
index_ANexp_w2.c * ideology.c |
0.00 | -0.00 – 0.00 | 0.275 | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | -0.00 – 0.00 | 0.709 |
| trustExpert_w2.c | 0.36 | 0.30 – 0.42 | <0.001 | ||||||
|
trustExpert_w2.c * ideology.c |
-0.02 | -0.05 – 0.01 | 0.263 | ||||||
| Observations | 2448 | 2449 | 2448 | ||||||
| R2 / R2 adjusted | 0.083 / 0.081 | 0.165 / 0.163 | 0.134 / 0.131 | ||||||
summary(m.s3.a <- lm(vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
age.c + education.c + white_.5, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
## age.c + education.c + white_.5, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1044 -0.3664 0.3046 0.7190 2.4337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0172195 0.0394684 -0.436 0.66272
## index_ANexp_w3.c 0.0039663 0.0005031 7.884 8.33e-15 ***
## ideology.c -0.1495609 0.0207887 -7.194 1.24e-12 ***
## age.c 0.0163019 0.0023635 6.897 9.44e-12 ***
## education.c 0.0516708 0.0129714 3.983 7.29e-05 ***
## white_.5 -0.0406239 0.0784844 -0.518 0.60485
## index_ANexp_w3.c:ideology.c 0.0008704 0.0002740 3.176 0.00154 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 990 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1755, Adjusted R-squared: 0.1705
## F-statistic: 35.13 on 6 and 990 DF, p-value: < 2.2e-16
tab_model(m.s3.a)
| vaxxBehavior.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.02 | -0.09 – 0.06 | 0.663 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.15 | -0.19 – -0.11 | <0.001 |
| age.c | 0.02 | 0.01 – 0.02 | <0.001 |
| education.c | 0.05 | 0.03 – 0.08 | <0.001 |
| white_.5 | -0.04 | -0.19 – 0.11 | 0.605 |
|
index_ANexp_w3.c * ideology.c |
0.00 | 0.00 – 0.00 | 0.002 |
| Observations | 997 | ||
| R2 / R2 adjusted | 0.176 / 0.171 | ||
summary(m.s3.b <- lm(vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
avgANexp_w1w2.c + avgVaxxAttitudes.c +
age.c + education.c + white_.5, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
## avgANexp_w1w2.c + avgVaxxAttitudes.c + age.c + education.c +
## white_.5, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4559 -0.4809 0.1716 0.6222 2.1887
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0286641 0.0351613 -0.815 0.41514
## index_ANexp_w3.c 0.0024027 0.0006104 3.936 8.86e-05 ***
## ideology.c -0.1123268 0.0188568 -5.957 3.57e-09 ***
## avgANexp_w1w2.c -0.0002928 0.0006809 -0.430 0.66725
## avgVaxxAttitudes.c 0.2602710 0.0161889 16.077 < 2e-16 ***
## age.c 0.0092900 0.0021537 4.314 1.77e-05 ***
## education.c 0.0380303 0.0115826 3.283 0.00106 **
## white_.5 -0.1284313 0.0704800 -1.822 0.06872 .
## index_ANexp_w3.c:ideology.c 0.0004994 0.0002456 2.033 0.04230 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9488 on 988 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.3476, Adjusted R-squared: 0.3423
## F-statistic: 65.79 on 8 and 988 DF, p-value: < 2.2e-16
tab_model(m.s3.b)
| vaxxBehavior.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.03 | -0.10 – 0.04 | 0.415 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.11 | -0.15 – -0.08 | <0.001 |
| avgANexp_w1w2.c | -0.00 | -0.00 – 0.00 | 0.667 |
| avgVaxxAttitudes.c | 0.26 | 0.23 – 0.29 | <0.001 |
| age.c | 0.01 | 0.01 – 0.01 | <0.001 |
| education.c | 0.04 | 0.02 – 0.06 | 0.001 |
| white_.5 | -0.13 | -0.27 – 0.01 | 0.069 |
|
index_ANexp_w3.c * ideology.c |
0.00 | 0.00 – 0.00 | 0.042 |
| Observations | 997 | ||
| R2 / R2 adjusted | 0.348 / 0.342 | ||
summary(m.s3.c <- lm(vaxxBehavior.c ~ (avgTrustSci.c + index_ANexp_w3.c) * ideology.c +
avgANexp_w1w2.c + avgVaxxAttitudes.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ (avgTrustSci.c + index_ANexp_w3.c) *
## ideology.c + avgANexp_w1w2.c + avgVaxxAttitudes.c + age.c +
## white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5085 -0.4229 0.1539 0.6246 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0113560 0.0365911 0.310 0.75636
## avgTrustSci.c 0.2369087 0.0440297 5.381 9.29e-08 ***
## index_ANexp_w3.c 0.0023833 0.0006039 3.946 8.51e-05 ***
## ideology.c -0.0671123 0.0207230 -3.239 0.00124 **
## avgANexp_w1w2.c -0.0004778 0.0006719 -0.711 0.47716
## avgVaxxAttitudes.c 0.2308458 0.0168009 13.740 < 2e-16 ***
## age.c 0.0085888 0.0021412 4.011 6.50e-05 ***
## white_.5 -0.1803450 0.0703880 -2.562 0.01055 *
## education.c 0.0339963 0.0114490 2.969 0.00306 **
## avgTrustSci.c:ideology.c 0.0490348 0.0207701 2.361 0.01843 *
## index_ANexp_w3.c:ideology.c 0.0003616 0.0002448 1.477 0.13992
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9328 on 980 degrees of freedom
## (2869 observations deleted due to missingness)
## Multiple R-squared: 0.3709, Adjusted R-squared: 0.3644
## F-statistic: 57.77 on 10 and 980 DF, p-value: < 2.2e-16
tab_model(m.s3.c)
| vaxxBehavior.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.01 | -0.06 – 0.08 | 0.756 |
| avgTrustSci.c | 0.24 | 0.15 – 0.32 | <0.001 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.07 | -0.11 – -0.03 | 0.001 |
| avgANexp_w1w2.c | -0.00 | -0.00 – 0.00 | 0.477 |
| avgVaxxAttitudes.c | 0.23 | 0.20 – 0.26 | <0.001 |
| age.c | 0.01 | 0.00 – 0.01 | <0.001 |
| white_.5 | -0.18 | -0.32 – -0.04 | 0.011 |
| education.c | 0.03 | 0.01 – 0.06 | 0.003 |
|
avgTrustSci.c * ideology.c |
0.05 | 0.01 – 0.09 | 0.018 |
|
index_ANexp_w3.c * ideology.c |
0.00 | -0.00 – 0.00 | 0.140 |
| Observations | 991 | ||
| R2 / R2 adjusted | 0.371 / 0.364 | ||
summary(m.s3.d <- lm(vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
avgANexp_w1w2.c + avgVaxxAttitudes.c +
age.c + white_.5 + education.c +
avgCRT.c + avgSciLit.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
## avgANexp_w1w2.c + avgVaxxAttitudes.c + age.c + white_.5 +
## education.c + avgCRT.c + avgSciLit.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3898 -0.4961 0.1574 0.6166 2.2476
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0300971 0.0360710 -0.834 0.40427
## index_ANexp_w3.c 0.0024694 0.0006260 3.945 8.57e-05 ***
## ideology.c -0.1163917 0.0191496 -6.078 1.75e-09 ***
## avgANexp_w1w2.c -0.0003831 0.0006947 -0.551 0.58151
## avgVaxxAttitudes.c 0.2566747 0.0165462 15.513 < 2e-16 ***
## age.c 0.0095431 0.0021842 4.369 1.38e-05 ***
## white_.5 -0.1417309 0.0727701 -1.948 0.05175 .
## education.c 0.0358247 0.0120070 2.984 0.00292 **
## avgCRT.c 0.1095137 0.1059316 1.034 0.30148
## avgSciLit.c 0.1227634 0.2424642 0.506 0.61275
## index_ANexp_w3.c:ideology.c 0.0004903 0.0002493 1.967 0.04947 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9518 on 968 degrees of freedom
## (2881 observations deleted due to missingness)
## Multiple R-squared: 0.348, Adjusted R-squared: 0.3413
## F-statistic: 51.67 on 10 and 968 DF, p-value: < 2.2e-16
tab_model(m.s3.d)
| vaxxBehavior.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.03 | -0.10 – 0.04 | 0.404 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.12 | -0.15 – -0.08 | <0.001 |
| avgANexp_w1w2.c | -0.00 | -0.00 – 0.00 | 0.582 |
| avgVaxxAttitudes.c | 0.26 | 0.22 – 0.29 | <0.001 |
| age.c | 0.01 | 0.01 – 0.01 | <0.001 |
| white_.5 | -0.14 | -0.28 – 0.00 | 0.052 |
| education.c | 0.04 | 0.01 – 0.06 | 0.003 |
| avgCRT.c | 0.11 | -0.10 – 0.32 | 0.301 |
| avgSciLit.c | 0.12 | -0.35 – 0.60 | 0.613 |
|
index_ANexp_w3.c * ideology.c |
0.00 | 0.00 – 0.00 | 0.049 |
| Observations | 979 | ||
| R2 / R2 adjusted | 0.348 / 0.341 | ||
summary(m.s3.e <- lm(vaxxBehavior.c ~ (avgTrustSci.c + index_ANexp_w3.c) * ideology.c +
avgANexp_w1w2.c + avgVaxxAttitudes.c +
age.c + white_.5 + education.c +
avgCRT.c + avgSciLit.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ (avgTrustSci.c + index_ANexp_w3.c) *
## ideology.c + avgANexp_w1w2.c + avgVaxxAttitudes.c + age.c +
## white_.5 + education.c + avgCRT.c + avgSciLit.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4480 -0.4303 0.1580 0.6237 2.5453
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0070833 0.0373845 0.189 0.849762
## avgTrustSci.c 0.2384658 0.0446028 5.346 1.12e-07 ***
## index_ANexp_w3.c 0.0024151 0.0006157 3.923 9.37e-05 ***
## ideology.c -0.0701254 0.0208808 -3.358 0.000815 ***
## avgANexp_w1w2.c -0.0005434 0.0006834 -0.795 0.426734
## avgVaxxAttitudes.c 0.2286039 0.0170259 13.427 < 2e-16 ***
## age.c 0.0088771 0.0021547 4.120 4.12e-05 ***
## white_.5 -0.1818701 0.0720013 -2.526 0.011698 *
## education.c 0.0324337 0.0118240 2.743 0.006200 **
## avgCRT.c 0.0711474 0.1049146 0.678 0.497842
## avgSciLit.c 0.1324274 0.2382683 0.556 0.578482
## avgTrustSci.c:ideology.c 0.0513078 0.0209455 2.450 0.014478 *
## index_ANexp_w3.c:ideology.c 0.0003413 0.0002469 1.382 0.167139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9351 on 966 degrees of freedom
## (2881 observations deleted due to missingness)
## Multiple R-squared: 0.3719, Adjusted R-squared: 0.3641
## F-statistic: 47.66 on 12 and 966 DF, p-value: < 2.2e-16
tab_model(m.s3.e)
| vaxxBehavior.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.01 | -0.07 – 0.08 | 0.850 |
| avgTrustSci.c | 0.24 | 0.15 – 0.33 | <0.001 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.07 | -0.11 – -0.03 | 0.001 |
| avgANexp_w1w2.c | -0.00 | -0.00 – 0.00 | 0.427 |
| avgVaxxAttitudes.c | 0.23 | 0.20 – 0.26 | <0.001 |
| age.c | 0.01 | 0.00 – 0.01 | <0.001 |
| white_.5 | -0.18 | -0.32 – -0.04 | 0.012 |
| education.c | 0.03 | 0.01 – 0.06 | 0.006 |
| avgCRT.c | 0.07 | -0.13 – 0.28 | 0.498 |
| avgSciLit.c | 0.13 | -0.34 – 0.60 | 0.578 |
|
avgTrustSci.c * ideology.c |
0.05 | 0.01 – 0.09 | 0.014 |
|
index_ANexp_w3.c * ideology.c |
0.00 | -0.00 – 0.00 | 0.167 |
| Observations | 979 | ||
| R2 / R2 adjusted | 0.372 / 0.364 | ||
sobel test: https://quantpsy.org/sobel/sobel.htm
summary(m3.xy <- lm(vaxxBehavior.c ~ index_ANexp_w3.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ index_ANexp_w3.c + ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3665 -0.3807 0.3173 0.7568 2.3831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0422926 0.0388479 -1.089 0.277
## index_ANexp_w3.c 0.0038373 0.0005037 7.618 6.02e-14 ***
## ideology.c -0.1512641 0.0208769 -7.246 8.65e-13 ***
## age.c 0.0157091 0.0023669 6.637 5.26e-11 ***
## white_.5 -0.0454964 0.0788284 -0.577 0.564
## education.c 0.0539354 0.0130111 4.145 3.68e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.07 on 991 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1671, Adjusted R-squared: 0.1629
## F-statistic: 39.77 on 5 and 991 DF, p-value: < 2.2e-16
summary(m3.xm <- lm(avgTrustSci.c ~ index_ANexp_w3.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = avgTrustSci.c ~ index_ANexp_w3.c + ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.37123 -0.45216 0.00732 0.51357 1.78295
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0591067 0.0261601 -2.259 0.024075 *
## index_ANexp_w3.c 0.0007242 0.0003391 2.135 0.032971 *
## ideology.c -0.2268343 0.0140184 -16.181 < 2e-16 ***
## age.c 0.0065054 0.0015966 4.075 4.98e-05 ***
## white_.5 0.2391661 0.0530809 4.506 7.41e-06 ***
## education.c 0.0292658 0.0087270 3.353 0.000828 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7177 on 987 degrees of freedom
## (2867 observations deleted due to missingness)
## Multiple R-squared: 0.2461, Adjusted R-squared: 0.2423
## F-statistic: 64.43 on 5 and 987 DF, p-value: < 2.2e-16
summary(m3.xmy <- lm(vaxxBehavior.c ~ avgTrustSci.c + index_ANexp_w3.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ avgTrustSci.c + index_ANexp_w3.c +
## ideology.c + age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6413 -0.4671 0.2718 0.6970 2.1198
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0178400 0.0373609 -0.478 0.633110
## avgTrustSci.c 0.4437393 0.0454474 9.764 < 2e-16 ***
## index_ANexp_w3.c 0.0034348 0.0004865 7.060 3.13e-12 ***
## ideology.c -0.0528464 0.0225107 -2.348 0.019092 *
## age.c 0.0129624 0.0022937 5.651 2.08e-08 ***
## white_.5 -0.1598884 0.0765124 -2.090 0.036901 *
## education.c 0.0413826 0.0125052 3.309 0.000969 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.022 on 984 degrees of freedom
## (2869 observations deleted due to missingness)
## Multiple R-squared: 0.2414, Adjusted R-squared: 0.2368
## F-statistic: 52.19 on 6 and 984 DF, p-value: < 2.2e-16
tab_model(m3.xy, m3.xm, m3.xmy)
| vaxxBehavior.c | avgTrustSci.c | vaxxBehavior.c | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | -0.04 | -0.12 – 0.03 | 0.277 | -0.06 | -0.11 – -0.01 | 0.024 | -0.02 | -0.09 – 0.06 | 0.633 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | 0.033 | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.15 | -0.19 – -0.11 | <0.001 | -0.23 | -0.25 – -0.20 | <0.001 | -0.05 | -0.10 – -0.01 | 0.019 |
| age.c | 0.02 | 0.01 – 0.02 | <0.001 | 0.01 | 0.00 – 0.01 | <0.001 | 0.01 | 0.01 – 0.02 | <0.001 |
| white_.5 | -0.05 | -0.20 – 0.11 | 0.564 | 0.24 | 0.14 – 0.34 | <0.001 | -0.16 | -0.31 – -0.01 | 0.037 |
| education.c | 0.05 | 0.03 – 0.08 | <0.001 | 0.03 | 0.01 – 0.05 | 0.001 | 0.04 | 0.02 – 0.07 | 0.001 |
| avgTrustSci.c | 0.44 | 0.35 – 0.53 | <0.001 | ||||||
| Observations | 997 | 993 | 991 | ||||||
| R2 / R2 adjusted | 0.167 / 0.163 | 0.246 / 0.242 | 0.241 / 0.237 | ||||||
summary(m4.xy <- lm(vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1044 -0.3664 0.3046 0.7190 2.4337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0172195 0.0394684 -0.436 0.66272
## index_ANexp_w3.c 0.0039663 0.0005031 7.884 8.33e-15 ***
## ideology.c -0.1495609 0.0207887 -7.194 1.24e-12 ***
## age.c 0.0163019 0.0023635 6.897 9.44e-12 ***
## white_.5 -0.0406239 0.0784844 -0.518 0.60485
## education.c 0.0516708 0.0129714 3.983 7.29e-05 ***
## index_ANexp_w3.c:ideology.c 0.0008704 0.0002740 3.176 0.00154 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 990 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1755, Adjusted R-squared: 0.1705
## F-statistic: 35.13 on 6 and 990 DF, p-value: < 2.2e-16
summary(m4.xm <- lm(avgTrustSci.c ~ index_ANexp_w3.c * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = avgTrustSci.c ~ index_ANexp_w3.c * ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.37912 -0.47334 0.00095 0.51059 1.79660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0439404 0.0265930 -1.652 0.09879 .
## index_ANexp_w3.c 0.0008138 0.0003393 2.398 0.01666 *
## ideology.c -0.2258625 0.0139712 -16.166 < 2e-16 ***
## age.c 0.0069055 0.0015968 4.324 1.68e-05 ***
## white_.5 0.2431512 0.0529049 4.596 4.87e-06 ***
## education.c 0.0276728 0.0087127 3.176 0.00154 **
## index_ANexp_w3.c:ideology.c 0.0005250 0.0001826 2.875 0.00413 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7151 on 986 degrees of freedom
## (2867 observations deleted due to missingness)
## Multiple R-squared: 0.2523, Adjusted R-squared: 0.2478
## F-statistic: 55.47 on 6 and 986 DF, p-value: < 2.2e-16
summary(m4.xmy <- lm(vaxxBehavior.c ~ (avgTrustSci.c + index_ANexp_w3.c) * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ (avgTrustSci.c + index_ANexp_w3.c) *
## ideology.c + age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3584 -0.4085 0.2579 0.6639 2.2270
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0259312 0.0398994 0.650 0.51590
## avgTrustSci.c 0.4283296 0.0455023 9.413 < 2e-16 ***
## index_ANexp_w3.c 0.0034743 0.0004872 7.132 1.92e-12 ***
## ideology.c -0.0563628 0.0224622 -2.509 0.01226 *
## age.c 0.0137182 0.0022965 5.974 3.24e-09 ***
## white_.5 -0.1475230 0.0762881 -1.934 0.05343 .
## education.c 0.0408735 0.0124782 3.276 0.00109 **
## avgTrustSci.c:ideology.c 0.0460980 0.0226606 2.034 0.04219 *
## index_ANexp_w3.c:ideology.c 0.0006053 0.0002657 2.278 0.02294 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.018 on 982 degrees of freedom
## (2869 observations deleted due to missingness)
## Multiple R-squared: 0.2494, Adjusted R-squared: 0.2433
## F-statistic: 40.79 on 8 and 982 DF, p-value: < 2.2e-16
tab_model(m4.xy, m4.xm, m4.xmy)
| vaxxBehavior.c | avgTrustSci.c | vaxxBehavior.c | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | -0.02 | -0.09 – 0.06 | 0.663 | -0.04 | -0.10 – 0.01 | 0.099 | 0.03 | -0.05 – 0.10 | 0.516 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | 0.017 | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.15 | -0.19 – -0.11 | <0.001 | -0.23 | -0.25 – -0.20 | <0.001 | -0.06 | -0.10 – -0.01 | 0.012 |
| age.c | 0.02 | 0.01 – 0.02 | <0.001 | 0.01 | 0.00 – 0.01 | <0.001 | 0.01 | 0.01 – 0.02 | <0.001 |
| white_.5 | -0.04 | -0.19 – 0.11 | 0.605 | 0.24 | 0.14 – 0.35 | <0.001 | -0.15 | -0.30 – 0.00 | 0.053 |
| education.c | 0.05 | 0.03 – 0.08 | <0.001 | 0.03 | 0.01 – 0.04 | 0.002 | 0.04 | 0.02 – 0.07 | 0.001 |
|
index_ANexp_w3.c * ideology.c |
0.00 | 0.00 – 0.00 | 0.002 | 0.00 | 0.00 – 0.00 | 0.004 | 0.00 | 0.00 – 0.00 | 0.023 |
| avgTrustSci.c | 0.43 | 0.34 – 0.52 | <0.001 | ||||||
|
avgTrustSci.c * ideology.c |
0.05 | 0.00 – 0.09 | 0.042 | ||||||
| Observations | 997 | 993 | 991 | ||||||
| R2 / R2 adjusted | 0.176 / 0.171 | 0.252 / 0.248 | 0.249 / 0.243 | ||||||
summary(m5.xy <- lm(vaxxBehavior.c ~ index_ANexp_w3.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ index_ANexp_w3.c + ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3665 -0.3807 0.3173 0.7568 2.3831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0422926 0.0388479 -1.089 0.277
## index_ANexp_w3.c 0.0038373 0.0005037 7.618 6.02e-14 ***
## ideology.c -0.1512641 0.0208769 -7.246 8.65e-13 ***
## age.c 0.0157091 0.0023669 6.637 5.26e-11 ***
## white_.5 -0.0454964 0.0788284 -0.577 0.564
## education.c 0.0539354 0.0130111 4.145 3.68e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.07 on 991 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1671, Adjusted R-squared: 0.1629
## F-statistic: 39.77 on 5 and 991 DF, p-value: < 2.2e-16
summary(m5.xm <- lm(avgSciLit.c ~ index_ANexp_w3.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = avgSciLit.c ~ index_ANexp_w3.c + ideology.c + age.c +
## white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.40318 -0.07185 0.00390 0.10233 0.25581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.261e-02 4.723e-03 -2.670 0.00772 **
## index_ANexp_w3.c -8.425e-05 6.107e-05 -1.379 0.16806
## ideology.c 3.205e-03 2.535e-03 1.264 0.20636
## age.c 7.379e-05 2.878e-04 0.256 0.79772
## white_.5 4.419e-02 9.576e-03 4.615 4.46e-06 ***
## education.c 7.810e-03 1.579e-03 4.948 8.82e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1299 on 990 degrees of freedom
## (2864 observations deleted due to missingness)
## Multiple R-squared: 0.05807, Adjusted R-squared: 0.05331
## F-statistic: 12.21 on 5 and 990 DF, p-value: 1.686e-11
summary(m5.xmy <- lm(vaxxBehavior.c ~ avgSciLit.c + index_ANexp_w3.c +
ideology.c + age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ avgSciLit.c + index_ANexp_w3.c +
## ideology.c + age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3311 -0.3940 0.3155 0.7533 2.3642
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0445562 0.0390653 -1.141 0.254
## avgSciLit.c 0.2240026 0.2640638 0.848 0.396
## index_ANexp_w3.c 0.0038545 0.0005059 7.620 5.95e-14 ***
## ideology.c -0.1542812 0.0209272 -7.372 3.55e-13 ***
## age.c 0.0160169 0.0023723 6.752 2.49e-11 ***
## white_.5 -0.0527245 0.0799309 -0.660 0.510
## education.c 0.0524037 0.0131697 3.979 7.42e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.07 on 987 degrees of freedom
## (2866 observations deleted due to missingness)
## Multiple R-squared: 0.1699, Adjusted R-squared: 0.1648
## F-statistic: 33.67 on 6 and 987 DF, p-value: < 2.2e-16
tab_model(m5.xy, m5.xm, m5.xmy)
| vaxxBehavior.c | avgSciLit.c | vaxxBehavior.c | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | -0.04 | -0.12 – 0.03 | 0.277 | -0.01 | -0.02 – -0.00 | 0.008 | -0.04 | -0.12 – 0.03 | 0.254 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 | -0.00 | -0.00 – 0.00 | 0.168 | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.15 | -0.19 – -0.11 | <0.001 | 0.00 | -0.00 – 0.01 | 0.206 | -0.15 | -0.20 – -0.11 | <0.001 |
| age.c | 0.02 | 0.01 – 0.02 | <0.001 | 0.00 | -0.00 – 0.00 | 0.798 | 0.02 | 0.01 – 0.02 | <0.001 |
| white_.5 | -0.05 | -0.20 – 0.11 | 0.564 | 0.04 | 0.03 – 0.06 | <0.001 | -0.05 | -0.21 – 0.10 | 0.510 |
| education.c | 0.05 | 0.03 – 0.08 | <0.001 | 0.01 | 0.00 – 0.01 | <0.001 | 0.05 | 0.03 – 0.08 | <0.001 |
| avgSciLit.c | 0.22 | -0.29 – 0.74 | 0.396 | ||||||
| Observations | 997 | 996 | 994 | ||||||
| R2 / R2 adjusted | 0.167 / 0.163 | 0.058 / 0.053 | 0.170 / 0.165 | ||||||
summary(m6.xy <- lm(vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ index_ANexp_w3.c * ideology.c +
## age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1044 -0.3664 0.3046 0.7190 2.4337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0172195 0.0394684 -0.436 0.66272
## index_ANexp_w3.c 0.0039663 0.0005031 7.884 8.33e-15 ***
## ideology.c -0.1495609 0.0207887 -7.194 1.24e-12 ***
## age.c 0.0163019 0.0023635 6.897 9.44e-12 ***
## white_.5 -0.0406239 0.0784844 -0.518 0.60485
## education.c 0.0516708 0.0129714 3.983 7.29e-05 ***
## index_ANexp_w3.c:ideology.c 0.0008704 0.0002740 3.176 0.00154 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 990 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1755, Adjusted R-squared: 0.1705
## F-statistic: 35.13 on 6 and 990 DF, p-value: < 2.2e-16
summary(m6.xm <- lm(avgSciLit.c ~ index_ANexp_w3.c * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = avgSciLit.c ~ index_ANexp_w3.c * ideology.c + age.c +
## white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.40431 -0.07188 0.00414 0.10238 0.25577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.257e-02 4.822e-03 -2.607 0.00928 **
## index_ANexp_w3.c -8.400e-05 6.138e-05 -1.368 0.17150
## ideology.c 3.207e-03 2.536e-03 1.264 0.20637
## age.c 7.477e-05 2.889e-04 0.259 0.79585
## white_.5 4.420e-02 9.585e-03 4.611 4.52e-06 ***
## education.c 7.806e-03 1.582e-03 4.933 9.48e-07 ***
## index_ANexp_w3.c:ideology.c 1.389e-06 3.303e-05 0.042 0.96647
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1299 on 989 degrees of freedom
## (2864 observations deleted due to missingness)
## Multiple R-squared: 0.05807, Adjusted R-squared: 0.05235
## F-statistic: 10.16 on 6 and 989 DF, p-value: 6.29e-11
summary(m6.xmy <- lm(vaxxBehavior.c ~ (avgSciLit.c + index_ANexp_w3.c) * ideology.c +
age.c + white_.5 + education.c, data = d))
##
## Call:
## lm(formula = vaxxBehavior.c ~ (avgSciLit.c + index_ANexp_w3.c) *
## ideology.c + age.c + white_.5 + education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1186 -0.3772 0.3055 0.7242 2.3752
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0212611 0.0397330 -0.535 0.592702
## avgSciLit.c 0.2392498 0.2629107 0.910 0.363043
## index_ANexp_w3.c 0.0039992 0.0005054 7.912 6.76e-15 ***
## ideology.c -0.1535708 0.0208663 -7.360 3.88e-13 ***
## age.c 0.0166840 0.0023701 7.039 3.62e-12 ***
## white_.5 -0.0446779 0.0796454 -0.561 0.574952
## education.c 0.0504533 0.0131392 3.840 0.000131 ***
## avgSciLit.c:ideology.c 0.1512509 0.1490418 1.015 0.310440
## index_ANexp_w3.c:ideology.c 0.0009218 0.0002794 3.299 0.001004 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 985 degrees of freedom
## (2866 observations deleted due to missingness)
## Multiple R-squared: 0.1791, Adjusted R-squared: 0.1724
## F-statistic: 26.86 on 8 and 985 DF, p-value: < 2.2e-16
tab_model(m6.xy, m6.xm, m6.xmy)
| vaxxBehavior.c | avgSciLit.c | vaxxBehavior.c | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | -0.02 | -0.09 – 0.06 | 0.663 | -0.01 | -0.02 – -0.00 | 0.009 | -0.02 | -0.10 – 0.06 | 0.593 |
| index_ANexp_w3.c | 0.00 | 0.00 – 0.00 | <0.001 | -0.00 | -0.00 – 0.00 | 0.172 | 0.00 | 0.00 – 0.00 | <0.001 |
| ideology.c | -0.15 | -0.19 – -0.11 | <0.001 | 0.00 | -0.00 – 0.01 | 0.206 | -0.15 | -0.19 – -0.11 | <0.001 |
| age.c | 0.02 | 0.01 – 0.02 | <0.001 | 0.00 | -0.00 – 0.00 | 0.796 | 0.02 | 0.01 – 0.02 | <0.001 |
| white_.5 | -0.04 | -0.19 – 0.11 | 0.605 | 0.04 | 0.03 – 0.06 | <0.001 | -0.04 | -0.20 – 0.11 | 0.575 |
| education.c | 0.05 | 0.03 – 0.08 | <0.001 | 0.01 | 0.00 – 0.01 | <0.001 | 0.05 | 0.02 – 0.08 | <0.001 |
|
index_ANexp_w3.c * ideology.c |
0.00 | 0.00 – 0.00 | 0.002 | 0.00 | -0.00 – 0.00 | 0.966 | 0.00 | 0.00 – 0.00 | 0.001 |
| avgSciLit.c | 0.24 | -0.28 – 0.76 | 0.363 | ||||||
| avgSciLit.c * ideology.c | 0.15 | -0.14 – 0.44 | 0.310 | ||||||
| Observations | 997 | 996 | 994 | ||||||
| R2 / R2 adjusted | 0.176 / 0.171 | 0.058 / 0.052 | 0.179 / 0.172 | ||||||