library(ISLR2)
library(MASS)
library(e1071)
library(corrplot)
library(class)
Weekly
data set, which is part of the ISLR2 package. This data is
similar in nature to the Smarket data from this chapter’s
lab, except that it contains 1,089 weekly returns for 21 years, from the
beginning of 1990 to the end of 2010.a) Produce some numerical and graphical summaries of the
Weekly data. Do there appear to be any
patterns?
head(Weekly)
## Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction
## 1 1990 0.816 1.572 -3.936 -0.229 -3.484 0.1549760 -0.270 Down
## 2 1990 -0.270 0.816 1.572 -3.936 -0.229 0.1485740 -2.576 Down
## 3 1990 -2.576 -0.270 0.816 1.572 -3.936 0.1598375 3.514 Up
## 4 1990 3.514 -2.576 -0.270 0.816 1.572 0.1616300 0.712 Up
## 5 1990 0.712 3.514 -2.576 -0.270 0.816 0.1537280 1.178 Up
## 6 1990 1.178 0.712 3.514 -2.576 -0.270 0.1544440 -1.372 Down
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
pairs(Weekly)
corr <- cor(Weekly[ , -9])
corrplot(corr, method = "ellipse")
Volume and Year appear to have any
relationship. There appears to be a strong positive relationship between
the two. This might indicate that as the years go on there is an
increase in the total number of shares traded. That may not mean
anything in terms of predicting Direction. Other than that
there doesn’t appear to be any noticeable relationships between the
variables. This could make predicting Direction
difficult.b) Use the full data set to perform a logistic regression
with Direction as the response and the five lag variables
plus Volume as predictors. Use the summary function to
print the results. Do any of the predictors appear to be statistically
significant? If so, which ones?
log_fit <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly,
family = "binomial")
summary(log_fit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = "binomial", data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
Lag2 appears to be statistically
significant at the 0.05 level with a p-value of 0.0296. All other
variables do not appear to be statistically significant.c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
log_fit_prob <- predict(log_fit, type = "response")
log_fit_pred <- rep("Down", 1089)
log_fit_pred[log_fit_prob > 0.5] = "Up"
table(log_fit_pred, Weekly$Direction)
##
## log_fit_pred Down Up
## Down 54 48
## Up 430 557
mean(log_fit_pred == Weekly$Direction)
## [1] 0.5610652
d) Now fit the logistic regression model using a training
data period from 1990 to 2008, with Lag2 as the only
predictor. Compute the confusion matrix and the overall fraction of
correct predictions for the held out data (that is, the data from 2009
and 2010).
train <- (Weekly$Year < 2009)
weekly_0910 <- Weekly[!train, ]
direction_0910 <- Weekly$Direction[!train]
dim(weekly_0910)
## [1] 104 9
log_fit2 <- glm(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
summary(log_fit2)
##
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, data = Weekly,
## subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.536 -1.264 1.021 1.091 1.368
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.20326 0.06428 3.162 0.00157 **
## Lag2 0.05810 0.02870 2.024 0.04298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1354.7 on 984 degrees of freedom
## Residual deviance: 1350.5 on 983 degrees of freedom
## AIC: 1354.5
##
## Number of Fisher Scoring iterations: 4
log_fit_prob2 <- predict(log_fit2, weekly_0910, type = "response")
log_fit_pred2 <- rep("Down", 104)
log_fit_pred2[log_fit_prob2 > 0.5] <- "Up"
table(log_fit_pred2, direction_0910)
## direction_0910
## log_fit_pred2 Down Up
## Down 9 5
## Up 34 56
mean(log_fit_pred2 == direction_0910)
## [1] 0.625
Lag2 as the only
predictor has a test accuracy of 62.5%.e) Repeat d) using LDA.
lda_fit <- lda(Direction ~ Lag2, data = Weekly, subset = train)
lda_fit
## Call:
## lda(Direction ~ Lag2, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
##
## Coefficients of linear discriminants:
## LD1
## Lag2 0.4414162
pred_lda <- predict(lda_fit, weekly_0910)
table(pred_lda$class, direction_0910)
## direction_0910
## Down Up
## Down 9 5
## Up 34 56
mean(pred_lda$class == direction_0910)
## [1] 0.625
Lag2 as the
only predictor has a test accuracy of 62.5%.f) Repeat d) using QDA.
qda_fit <- qda(Direction ~ Lag2, data = Weekly, subset = train)
qda_fit
## Call:
## qda(Direction ~ Lag2, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
pred_qda <- predict(qda_fit, weekly_0910)
table(pred_qda$class, direction_0910)
## direction_0910
## Down Up
## Down 0 0
## Up 43 61
mean(pred_qda$class == direction_0910)
## [1] 0.5865385
Lag2 as
the only predictor has a test accuracy of 58.65%. The model predicted
“Up” every time for the test data set.g) Repeat d) using KNN with K = 1.
train_X <- data.frame(Weekly[train, ]$Lag2)
test_X <- data.frame(Weekly[!train, ]$Lag2)
train_Direction <- Weekly[train, ]$Direction
set.seed(1)
knn_pred <- knn(train_X, test_X, train_Direction, k=1)
table(knn_pred, direction_0910)
## direction_0910
## knn_pred Down Up
## Down 21 30
## Up 22 31
mean(knn_pred == direction_0910)
## [1] 0.5
Lag2
as the only predictor has a test accuracy of 50%.h) Repeat d) using naive Bayes.
nb_fit <- naiveBayes(Direction ~ Lag2, data = Weekly, subset = train)
nb_fit
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## Down Up
## 0.4477157 0.5522843
##
## Conditional probabilities:
## Lag2
## Y [,1] [,2]
## Down -0.03568254 2.199504
## Up 0.26036581 2.317485
nb_pred <- predict(nb_fit, weekly_0910)
table(nb_pred, direction_0910)
## direction_0910
## nb_pred Down Up
## Down 0 0
## Up 43 61
mean(nb_pred == direction_0910)
## [1] 0.5865385
Lag2 as the only predictor
has a test accuracy of 58.65%. The model predicted “Up” every time for
the test data set just like the QDA model.i) Which of these methods appears to provide the best results on this data?
| Model | Test Accuracy |
|---|---|
| Logistic Regression | 62.5% |
| LDA | 62.5% |
| QDA | 58.65% |
| KNN with k = 1 | 50% |
| Naive Bayes | 58.65% |
j) Experiment with different combinations of predictors, including possible transformations and iterations, for each of the methods. Report the variables, method, associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.
Logistic regression with the interaction between Lag1 and Lag2 as the predictor:
log_fit3 <- glm(Direction ~ Lag1:Lag2, data = Weekly, family = binomial, subset = train)
log_fit_prob3 <- predict(log_fit3, weekly_0910, type = "response")
log_fit_pred3 <- rep("Down", 104)
log_fit_pred3[log_fit_prob3 > 0.5] = "Up"
table(log_fit_pred3, direction_0910)
## direction_0910
## log_fit_pred3 Down Up
## Down 1 1
## Up 42 60
mean(log_fit_pred3 == direction_0910)
## [1] 0.5865385
LDA with the interaction of Lag2 and Lag3 as the predictor:
lda_fit2 <- lda(Direction ~ Lag2:Lag3, data = Weekly, subset = train)
pred_lda2 <- predict(lda_fit2, weekly_0910)
table(pred_lda2$class, direction_0910)
## direction_0910
## Down Up
## Down 0 0
## Up 43 61
mean(pred_lda2$class == direction_0910)
## [1] 0.5865385
QDA with Lag3 raised to the third power as the predictor:
qda_fit2 <- qda(Direction ~ I(Lag2**3), data = Weekly, subset = train)
pred_qda2 <- predict(qda_fit2, weekly_0910)
table(pred_qda2$class, direction_0910)
## direction_0910
## Down Up
## Down 3 4
## Up 40 57
mean(pred_qda2$class == direction_0910)
## [1] 0.5769231
KNN with k = 5:
knn_pred2 <- knn(train_X, test_X, train_Direction, k = 5)
table(knn_pred2, direction_0910)
## direction_0910
## knn_pred2 Down Up
## Down 15 20
## Up 28 41
mean(knn_pred2 == direction_0910)
## [1] 0.5384615
KNN with k = 10:
knn_pred3 <- knn(train_X, test_X, train_Direction, k = 10)
table(knn_pred3, direction_0910)
## direction_0910
## knn_pred3 Down Up
## Down 17 19
## Up 26 42
mean(knn_pred3 == direction_0910)
## [1] 0.5673077
Lag1 and Lag2 and
the LDA model with the interaction term of Lag2 and
Lag3. The test accuracy for both models is 58.65%. This is
slightly less accurate than the logistic regression and LDA models with
just Lag2 as the only predictor. The various interactions,
transformations, and values for k do not seem to improve the test
accuracy of the base models.Auto
variables.a) Create a binary variable, mpg01, that
contains a 1 if mpg contains a 1 if mpg
contains a value above its median, and a 0 if mpg contains
a value below its median. You can compute the median using the
median() function. Note that you may find it helpful to use
the data.frame() function to create a single data set
containing both mpg01 and the other Auto
variables.
Auto1 <- Auto
attach(Auto1)
mpg01 <- ifelse(mpg > median(mpg), 1, 0)
Auto1 <- data.frame(Auto1, mpg01)
b) Explore the data graphically in order to investigate the
association between mpg01 and the other features. Which of
the other features seem most likely to be useful in predicting
mpg01? Scatterplots and boxplots may be a useful tools to
answer this question. Describe your findings.
par(mfrow = c(2, 3))
plot(factor(mpg01), cylinders, ylab = "Cylinders", xlab = "mpg01")
plot(factor(mpg01), displacement, ylab = "Displacement", xlab = "mpg01")
plot(factor(mpg01), horsepower, ylab = "Horsepower", xlab = "mpg01")
plot(factor(mpg01), weight, ylab = "Weight", xlab = "mpg01")
plot(factor(mpg01), acceleration, ylab = "Acceleration", xlab = "mpg01")
plot(factor(mpg01), year, ylab = "Manufacture year", xlab = "mpg01")
par(mfrow = c(3, 2))
plot(cylinders, mpg01, xlab = "Cylinders", ylab = "mpg01")
plot(displacement, mpg01, xlab = "Displacement", ylab = "mpg01" )
plot(horsepower, mpg01, xlab = "Horsepower", ylab = "mpg01")
plot(weight, mpg01, xlab = "Weight", ylab = "mpg01")
plot(acceleration, mpg01, xlab = "Acceleration", ylab = "mpg01")
plot(year, mpg01, xlab = "Year", ylab = "mpg01")
mpg01 in the predictor variables
Cylinders, Displacement,
Horsepower, and Weight. This could mean that
those variables could be useful predictors.c) Split the data into a training set and a test set.
set.seed(1)
idx <- sample(1:nrow(Auto1), 0.8 * nrow(Auto1))
train_auto <- Auto1[idx, -9]
test_auto <- Auto1[-idx, -9]
d) Perform LDA on the training data in order to predict
mpg01 using the variables that seemed most associated with
mpg01 in b). What is the test error of the model
obtained?
auto_lda <- lda(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto1,
subset = idx)
auto_lda
## Call:
## lda(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto1,
## subset = idx)
##
## Prior probabilities of groups:
## 0 1
## 0.4920128 0.5079872
##
## Group means:
## cylinders displacement horsepower weight
## 0 6.753247 269.6558 128.0844 3598.026
## 1 4.207547 117.5723 79.8239 2350.283
##
## Coefficients of linear discriminants:
## LD1
## cylinders -0.3683695573
## displacement -0.0034034169
## horsepower 0.0043232816
## weight -0.0009434883
pred_lda <- predict(auto_lda, test_auto)
table(pred_lda$class, test_auto$mpg01)
##
## 0 1
## 0 35 0
## 1 7 37
mean(pred_lda$class != test_auto$mpg01)
## [1] 0.08860759
e) Perform QDA on the training data in order to predict
mpg01 using the variables that seemed most associated with
mpg01 in b). What is the test error of the model
obtained?
auto_qda <- qda(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto1,
subset = idx)
auto_qda
## Call:
## qda(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto1,
## subset = idx)
##
## Prior probabilities of groups:
## 0 1
## 0.4920128 0.5079872
##
## Group means:
## cylinders displacement horsepower weight
## 0 6.753247 269.6558 128.0844 3598.026
## 1 4.207547 117.5723 79.8239 2350.283
pred_qda <- predict(auto_qda, test_auto)
table(pred_qda$class, test_auto$mpg01)
##
## 0 1
## 0 37 2
## 1 5 35
mean(pred_qda$class != test_auto$mpg01)
## [1] 0.08860759
f) Perform logistic regression on the training data in order
to predict mpg01 using the variables that seemed most
associated with mpg01 in b). What is the test error of the
model obtained?
auto_glm <- glm(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto1,
family = binomial, subset = idx)
summary(auto_glm)
##
## Call:
## glm(formula = mpg01 ~ cylinders + displacement + horsepower +
## weight, family = binomial, data = Auto1, subset = idx)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4150 -0.2266 0.1209 0.4166 3.2331
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 11.5534753 1.8949939 6.097 1.08e-09 ***
## cylinders 0.0518590 0.3680655 0.141 0.88795
## displacement -0.0111621 0.0085732 -1.302 0.19293
## horsepower -0.0380148 0.0155083 -2.451 0.01424 *
## weight -0.0021874 0.0007507 -2.914 0.00357 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 433.83 on 312 degrees of freedom
## Residual deviance: 175.13 on 308 degrees of freedom
## AIC: 185.13
##
## Number of Fisher Scoring iterations: 7
auto_prob <- predict(auto_glm, test_auto, type = "response")
glm_pred <- rep(0, length(auto_prob))
glm_pred[auto_prob > 0.5] <- 1
table(glm_pred, test_auto$mpg01)
##
## glm_pred 0 1
## 0 38 1
## 1 4 36
mean(glm_pred != test_auto$mpg01)
## [1] 0.06329114
g) Perform naive Bayes on the training data in order to
predict mpg01 using the variables that seemed most
associated with mpg01 in b). What is the test error of the
model obtained?
nB_auto <- naiveBayes(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto1,
subset = idx)
nB_auto
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## 0 1
## 0.4920128 0.5079872
##
## Conditional probabilities:
## cylinders
## Y [,1] [,2]
## 0 6.753247 1.4294370
## 1 4.207547 0.7297951
##
## displacement
## Y [,1] [,2]
## 0 269.6558 85.82353
## 1 117.5723 40.76848
##
## horsepower
## Y [,1] [,2]
## 0 128.0844 35.44949
## 1 79.8239 16.41647
##
## weight
## Y [,1] [,2]
## 0 3598.026 668.4909
## 1 2350.283 401.2710
nB_pred <- predict(nB_auto, test_auto)
table(nB_pred, test_auto$mpg01)
##
## nB_pred 0 1
## 0 37 1
## 1 5 36
mean(nB_pred != test_auto$mpg01)
## [1] 0.07594937
h) Perform KNN on the training data, with several values of
K, in order to predict mpg01 using the variables that
seemed most associated with mpg01 in b). What is the test
error of the model obtained? Which value of K seems to perform the best
on this data set?
y_train <- train_auto$mpg01
x_train <- train_auto[ , c(2:5)]
y_test <- test_auto$mpg01
x_test <- test_auto[ , c(2:5)]
K = 1
set.seed(1)
knn_pred <- knn(x_train, x_test, y_train, k = 1)
table(knn_pred, y_test)
## y_test
## knn_pred 0 1
## 0 36 4
## 1 6 33
mean(knn_pred != y_test)
## [1] 0.1265823
K = 3
knn_pred2 <- knn(x_train, x_test, y_train, k = 3)
table(knn_pred2, y_test)
## y_test
## knn_pred2 0 1
## 0 38 4
## 1 4 33
mean(knn_pred2 != y_test)
## [1] 0.1012658
K = 10
knn_pred3 <- knn(x_train, x_test, y_train, k = 10)
table(knn_pred3, y_test)
## y_test
## knn_pred3 0 1
## 0 36 4
## 1 6 33
mean(knn_pred3 != y_test)
## [1] 0.1265823
K = 100
knn_pred4 <- knn(x_train, x_test, y_train, k = 100)
table(knn_pred4, y_test)
## y_test
## knn_pred4 0 1
## 0 35 3
## 1 7 34
mean(knn_pred4 != y_test)
## [1] 0.1265823
The test error rate is 12.66%.
The model with K = 3 appears to perform the best on this data.
Boston data set, fit classification
models in order to predict whether a given census tract has a crime rate
above of below the median. Explore logistic regression, LDA, naive
Bayes, and KNN models using various subsets of predictors. Describe your
findings.Boston1 <- Boston
attach(Boston1)
crim01 <- ifelse(crim > median(crim), 1, 0)
Boston1 <- data.frame(Boston1, crim01)
Train/Test split
set.seed(1)
idx2 <- sample(1:nrow(Boston1), 0.8 * nrow(Boston1))
train_boston <- Boston1[idx2, ]
test_boston <- Boston1[-idx2, ]
Logistic Regression
bos_glm <- glm(crim01 ~ . -crim, data = Boston1, family = binomial, subset = idx2)
summary(bos_glm)
##
## Call:
## glm(formula = crim01 ~ . - crim, family = binomial, data = Boston1,
## subset = idx2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0320 -0.1436 -0.0001 0.0016 3.6189
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -42.886750 7.627711 -5.622 1.88e-08 ***
## zn -0.106512 0.042954 -2.480 0.013149 *
## indus -0.064955 0.051562 -1.260 0.207759
## chas 0.473349 0.786069 0.602 0.547059
## nox 56.659757 9.246096 6.128 8.90e-10 ***
## rm -0.116177 0.846737 -0.137 0.890868
## age 0.021587 0.013568 1.591 0.111610
## dis 1.068641 0.278562 3.836 0.000125 ***
## rad 0.696528 0.175753 3.963 7.40e-05 ***
## tax -0.007585 0.003075 -2.466 0.013646 *
## ptratio 0.362327 0.148310 2.443 0.014564 *
## black -0.010208 0.005643 -1.809 0.070462 .
## lstat 0.078033 0.055794 1.399 0.161939
## medv 0.165209 0.080364 2.056 0.039806 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 560.06 on 403 degrees of freedom
## Residual deviance: 159.83 on 390 degrees of freedom
## AIC: 187.83
##
## Number of Fisher Scoring iterations: 9
bos_prob <- predict(bos_glm, test_boston, type = "response")
bospred_glm <- rep(0, length(bos_prob))
bospred_glm[bos_prob > 0.5] <- 1
table(bospred_glm, test_boston$crim01)
##
## bospred_glm 0 1
## 0 43 5
## 1 8 46
mean(bospred_glm != test_boston$crim01)
## [1] 0.127451
Logistic Regression with significant predictors
bos_glm2 <- glm(crim01 ~ zn + nox + dis + rad + tax + ptratio + medv, data = Boston1,
family = binomial, subset = idx2)
summary(bos_glm2)
##
## Call:
## glm(formula = crim01 ~ zn + nox + dis + rad + tax + ptratio +
## medv, family = binomial, data = Boston1, subset = idx2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2450 -0.1983 -0.0004 0.0022 3.3258
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -38.719704 6.147925 -6.298 3.01e-10 ***
## zn -0.092672 0.036109 -2.566 0.01027 *
## nox 51.492732 7.695414 6.691 2.21e-11 ***
## dis 0.770301 0.237990 3.237 0.00121 **
## rad 0.738695 0.155941 4.737 2.17e-06 ***
## tax -0.008533 0.002742 -3.112 0.00186 **
## ptratio 0.302910 0.124092 2.441 0.01465 *
## medv 0.085076 0.033196 2.563 0.01038 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 560.06 on 403 degrees of freedom
## Residual deviance: 173.51 on 396 degrees of freedom
## AIC: 189.51
##
## Number of Fisher Scoring iterations: 9
bos_prob2 <- predict(bos_glm2, test_boston, type = "response")
bospred_glm2 <- rep(0, length(bos_prob))
bospred_glm2[bos_prob2 > 0.5] <- 1
table(bospred_glm2, test_boston$crim01)
##
## bospred_glm2 0 1
## 0 44 6
## 1 7 45
mean(bospred_glm2 != test_boston$crim01)
## [1] 0.127451
LDA
bos_lda <- lda(crim01 ~ zn + nox + dis + rad + tax + ptratio + medv, data = Boston1,
subset = idx2)
bos_lda
## Call:
## lda(crim01 ~ zn + nox + dis + rad + tax + ptratio + medv, data = Boston1,
## subset = idx2)
##
## Prior probabilities of groups:
## 0 1
## 0.5 0.5
##
## Group means:
## zn nox dis rad tax ptratio medv
## 0 21.631188 0.4704243 5.036025 4.148515 309.4109 17.89307 25.28960
## 1 1.108911 0.6356634 2.532918 15.099010 513.8812 19.11931 20.43119
##
## Coefficients of linear discriminants:
## LD1
## zn -0.007200388
## nox 9.759752703
## dis -0.005351261
## rad 0.082365854
## tax -0.001156148
## ptratio 0.074340151
## medv 0.027899465
bospred_lda <- predict(bos_lda, test_boston)
table(bospred_lda$class, test_boston$crim01)
##
## 0 1
## 0 50 14
## 1 1 37
mean(bospred_lda$class != test_boston$crim01)
## [1] 0.1470588
QDA
bos_qda <- qda(crim01 ~ zn + nox + dis + rad + tax + ptratio + medv, data = Boston1,
subset = idx2)
bos_qda
## Call:
## qda(crim01 ~ zn + nox + dis + rad + tax + ptratio + medv, data = Boston1,
## subset = idx2)
##
## Prior probabilities of groups:
## 0 1
## 0.5 0.5
##
## Group means:
## zn nox dis rad tax ptratio medv
## 0 21.631188 0.4704243 5.036025 4.148515 309.4109 17.89307 25.28960
## 1 1.108911 0.6356634 2.532918 15.099010 513.8812 19.11931 20.43119
bospred_qda <- predict(bos_qda, test_boston)
table(bospred_qda$class, test_boston$crim01)
##
## 0 1
## 0 45 4
## 1 6 47
mean(bospred_qda$class != test_boston$crim01)
## [1] 0.09803922
Naive Bayes
nB_bos <- naiveBayes(crim01 ~ zn + nox + dis + rad + tax + ptratio + medv, data = Boston1,
subset = idx2)
nB_bos
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## 0 1
## 0.5 0.5
##
## Conditional probabilities:
## zn
## Y [,1] [,2]
## 0 21.631188 29.185014
## 1 1.108911 4.635792
##
## nox
## Y [,1] [,2]
## 0 0.4704243 0.05641035
## 1 0.6356634 0.09880639
##
## dis
## Y [,1] [,2]
## 0 5.036025 2.105805
## 1 2.532918 1.122580
##
## rad
## Y [,1] [,2]
## 0 4.148515 1.674427
## 1 15.099010 9.521387
##
## tax
## Y [,1] [,2]
## 0 309.4109 92.92116
## 1 513.8812 167.20743
##
## ptratio
## Y [,1] [,2]
## 0 17.89307 1.818466
## 1 19.11931 2.283441
##
## medv
## Y [,1] [,2]
## 0 25.28960 7.420105
## 1 20.43119 10.676765
nB_bospred <- predict(nB_bos, test_boston)
table(nB_bospred, test_boston$crim01)
##
## nB_bospred 0 1
## 0 45 15
## 1 6 36
mean(nB_bospred != test_boston$crim01)
## [1] 0.2058824
KNN with K = 5
knn_train <- cbind(zn, nox, dis, rad, tax, ptratio, medv)[idx2, ]
knn_test <- cbind(zn, nox, dis, rad, tax, ptratio, medv)[-idx2, ]
train_crim01 <- train_boston$crim01
test_crim01 <- test_boston$crim01
set.seed(1)
bos_knn <- knn(knn_train, knn_test, train_crim01, k = 5)
table(bos_knn, test_crim01)
## test_crim01
## bos_knn 0 1
## 0 45 3
## 1 6 48
mean(bos_knn != test_crim01)
## [1] 0.08823529
KNN with K = 10
bos_knn2 <- knn(knn_train, knn_test, train_crim01, k = 10)
table(bos_knn2, test_crim01)
## test_crim01
## bos_knn2 0 1
## 0 44 4
## 1 7 47
mean(bos_knn2 != test_crim01)
## [1] 0.1078431
KNN with K = 3
bos_knn3 <- knn(knn_train, knn_test, train_crim01, k = 3)
table(bos_knn3, test_crim01)
## test_crim01
## bos_knn3 0 1
## 0 49 3
## 1 2 48
mean(bos_knn3 != test_crim01)
## [1] 0.04901961
| Model | Test Accuracy Error Rate |
|---|---|
| Logistic Regression with all predictors | 12.75% |
| Logistic Regression with significant predictors | 12.75% |
| LDA | 14.71% |
| QDA | 9.80% |
| Naive Bayes | 20.59% |
| KNN with k = 3 | 4.90% |
| KNN with k = 5 | 8.82% |
| KNN with k = 10 | 10.78% |
After running various classification models on the
Boston data set to try and predict whether the crime rate
will be above or below the median crime rate, we see that both logistic
regression models perform almost identically. The second model only had
the predictors that were statistically significant at the 0.05 level.
Since the performance was so similar I went with those predictors for
the preceding models.
The KNN models appear to perform the best on this data. The two best models overall were the KNN with k = 3 and k = 5, while the model with k = 10 was right behind the QDA model in terms of test error rate.
The models that performed the worst were the naive Bayes and the LDA models, with both logistic regression models not faring too much better.