The tensile strength of Portland cement is being studied. Four different mixing techniques can be used economically. A completely randomized experiment was conducted and the following data were collected:
| Mixing Technique | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 3129 | 3000 | 2865 | 2890 |
| 2 | 3200 | 3300 | 2975 | 3150 |
| 3 | 2800 | 2900 | 2985 | 3050 |
| 4 | 2600 | 2700 | 2600 | 2765 |
3.7 Page 1
3.7 Page 2
3.7 Page 3
3.7 Page 4
3.7 Page 5
A product developer is investigating the tensile strength of a new synthetic fiber that will be used to make cloth for men’s shirts. Strength is usually affected by the percentage of cotton used in the blend of materials for the fiber. The engineer conducts a completely randomized experiment with five levels of cotton content and replicates the experiment five times. The data are shown in the following table.
Cotton Weight Percent |
1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 15 | 7 | 7 | 15 | 11 | 9 |
| 20 | 12 | 17 | 12 | 18 | 18 |
| 25 | 14 | 19 | 19 | 18 | 18 |
| 30 | 19 | 25 | 22 | 19 | 23 |
| 35 | 7 | 10 | 11 | 15 | 11 |
3.10 Page 1
3.10 Page 2
3.10 Page 3
3.10 Page 4
An article in the ACI Materials Journal (Vol. 84, 1987, pp. 213–216) describes several experiments investigating the rodding of concrete to remove entrapped air. A 3-inch & 6-inch cylinder was used, and the number of times this rod was used is the design variable. The resulting compressive strength of the concrete specimen is the response. The data are shown in the following table:
| Rodding Level | 1 | 2 | 3 |
|---|---|---|---|
| 10 | 1530 | 1530 | 1440 |
| 15 | 1610 | 1650 | 1500 |
| 20 | 1560 | 1730 | 1530 |
| 25 | 1500 | 1490 | 1510 |
Reading the Data:
PART A):
\[ H_o: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4} \]
\[ H_a: Atleast \space one \space \mu_i \space Differs \space (i=1,2,3,4) \]
rod10<-c(1530,1530,1440)
rod15<-c(1610,1650,1500)
rod20<-c(1560,1730,1530)
rod25<-c(1500,1490,1510)
rodadd<-rbind(rod10,rod15,rod20,rod25)
print(rodadd)
## [,1] [,2] [,3]
## rod10 1530 1530 1440
## rod15 1610 1650 1500
## rod20 1560 1730 1530
## rod25 1500 1490 1510
r10<-mean(rod10)
r15<-mean(rod15)
r20<-mean(rod20)
r25<-mean(rod25)
Finding SSE, SStreatment, MSE, MStreatment:
SSE10 <- (1530-r10)^2 + (1530-r10)^2 + (1440-r10)^2
SSE15 <- (1610-r15)^2 + (1650-r15)^2 + (1500-r15)^2
SSE20 <- (1560-r20)^2 + (1730-r20)^2 + (1530-r20)^2
SSE25 <- (1500-r25)^2 + (1490-r25)^2 + (1510-r25)^2
SSE & MSE:
SSE<- SSE10 + SSE15 + SSE20 + SSE25
print(SSE)
## [1] 40933.33
MSE<- SSE/(12-4)
print(MSE)
## [1] 5116.667
SStreatment & MStreatment:
mean <- c(mean(rodadd))
print(mean)
## [1] 1548.333
SStreatment <- 3*((r10 - mean)^2 + (r15 - mean)^2 + (r20 - mean)^2 + (r25 - mean)^2)
print(SStreatment)
## [1] 28633.33
MStreatment<-SStreatment/(4-1)
print(MStreatment)
## [1] 9544.444
Sum Squared Total (SST):
SST<-SSE+SStreatment
print(SST)
## [1] 69566.67
Finding F-Statistic:
Fo<-MStreatment/MSE
print(Fo)
## [1] 1.865364
Finding Critical Value of F: using F-Distribution Command (qf)
?qf
Fcritical<-qf(0.95,3,8)
print(Fcritical)
## [1] 4.066181
PART B): Finding P-Value
Using F-Distribution Command:
?pf
Pvalue<-pf(1.86536, 3, 8, lower.tail = FALSE)
print(Pvalue)
## [1] 0.2137821
Conclusion:
----> Since our F-Statistic Value (1.865) is less than critical value (4.066), so we fail to reject Ho and thus we conclude that there is no difference in compressive strength due to the rodding level.
----> P-value = 0.2138
3.20 Part A Page 1
3.20 Part A Page 2
getwd()
##Question 3.20::
#PART A)
#Reading the Data:
rod10<-c(1530,1530,1440)
rod15<-c(1610,1650,1500)
rod20<-c(1560,1730,1530)
rod25<-c(1500,1490,1510)
rodadd<-rbind(rod10,rod15,rod20,rod25)
print(rodadd)
r10<-mean(rod10)
r15<-mean(rod15)
r20<-mean(rod20)
r25<-mean(rod25)
#Finding SSE,SStreatment,MSE,MStreatment::
SSE10 <- (1530-r10)^2 + (1530-r10)^2 + (1440-r10)^2
SSE15 <- (1610-r15)^2 + (1650-r15)^2 + (1500-r15)^2
SSE20 <- (1560-r20)^2 + (1730-r20)^2 + (1530-r20)^2
SSE25 <- (1500-r25)^2 + (1490-r25)^2 + (1510-r25)^2
SSE<- SSE10 + SSE15 + SSE20 + SSE25
print(SSE)
#MSE:
MSE<- SSE/(12-4)
print(MSE)
#SStreatment::
mean <- c(mean(rodadd))
print(mean)
SStreatment <- 3*((r10 - mean)^2 + (r15 - mean)^2 + (r20 - mean)^2 + (r25 - mean)^2)
print(SStreatment)
#MStreatment:
MStreatment<-SStreatment/(4-1)
print(MStreatment)
#SST::
SST<-SSE+SStreatment
print(SST)
#F-Statistic:
Fo<-MStreatment/MSE
print(Fo)
#Critical Value:
?qf
Fcritical<-qf(0.95,3,8)
print(Fcritical)
#PART B)
?pf
Pvalue<-pf(1.86536, 3, 8, lower.tail = FALSE)
print(Pvalue)